Machine Learning for Autonomous Driving

Machine Learning for Autonomous Driving

Abstract

Autonomous vehicles (AVs) offer a rich source of high-impact research problems for the machine learning (ML) community; including perception, state estimation, probabilistic modeling, time series forecasting, gesture recognition, robustness guarantees, real-time constraints, user-machine communication, multi-agent planning, and intelligent infrastructure. Further, the interaction between ML subfields towards a common goal of autonomous driving can catalyze interesting inter-field discussions that spark new avenues of research, which this workshop aims to promote. As an application of ML, autonomous driving has the potential to greatly improve society by reducing road accidents, giving independence to those unable to drive, and even inspiring younger generations with tangible examples of ML-based technology clearly visible on local streets.

Date
Location
Virtual
Avatar
Rowan McAllister
Staff Research Scientist

My research interests include autonomous vehicles, reinforcement learning, and probabilistic modelling.