Robustness to Out-of-Distribution Inputs via Task-Aware Generative Uncertainty

Robustness to Out-of-Distribution Inputs via Task-Aware Generative Uncertainty

Abstract

Deep learning provides a powerful tool for machine perception when the observations resemble the training data. However, real-world robotic systems must react intelligently to their observations even in unexpected circumstances. This requires a system to reason about its own uncertainty given unfamiliar, out-of-distribution observations. Approximate Bayesian approaches are commonly used to estimate uncertainty for neural network predictions, but can struggle with out-of-distribution observations. Generative models can in principle detect out-of-distribution observations as those with a low estimated density. However, the mere presence of an out-of-distribution input does not by itself indicate an unsafe situation. In this paper, we present a method for uncertainty-aware robotic perception that combines generative modeling and model uncertainty to cope with uncertainty stemming from out-of-distribution states. Our method estimates an uncertainty measure about the model’s prediction, taking into account an explicit (generative) model of the observation distribution to handle out-of-distribution inputs. This is accomplished by probabilistically projecting observations onto the training distribution, such that out-of-distribution inputs map to uncertain in-distribution observations, which in turn produce uncertain task-related predictions, but only if task-relevant parts of the image change. We evaluate our method on an action-conditioned collision prediction task with both simulated and real data, and demonstrate that our method of projecting out-of-distribution observations improves the performance of four standard Bayesian and non-Bayesian neural network approaches, offering more favorable trade-offs between the proportion of time a robot can remain autonomous and the proportion of impending crashes successfully avoided.

Publication
In International Conference on Robotics and Automation
Avatar
Rowan McAllister
Staff Research Scientist

My research interests include autonomous vehicles, reinforcement learning, and probabilistic modelling.