
AUTONOMOUS RECONFIGURATION PLANNING IN

MODULAR ROBOTS

By

Rowan McAllister

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF ENGINEERING

AT

UNIVERSITY OF SYDNEY

SYDNEY, NEW SOUTH WALES

5 NOVEMBER 2009

c© Copyright by Rowan McAllister, 2009

ii

DECLARATION

Author: Rowan McAllister Date: 5 November 2009

Title: Autonomous Reconfiguration Planning in Modular Robots

Department: Engineering and Information Technologies

Degree: B.E. Convocation: November Year: 2009

Declaration The author attests that permissions has been obtained for the use of
any copyrighted material appearing in this thesis (other than brief excepts requiring
only proper acknowledgement in scholarly writing) and that all such use is clearly
acknowledged. This is all entirely my own work unless explicitly referenced. Specific
tasks conducted in this thesis include:

• Literature review of modular robotic hardware, history and design procedures

• Literature review and of self reconfiguration planners, drawing from the many
available papers to develop a survey of planners

• Development of module representations and all program routines from both
planners with the exception of Connectivity Checker which was borrowed and
edited from the Million Module March algorithm from Fitch and Butler

• Analysis of both designs

• Conducting all reconfiguration simulations and statistics compiled to verify design
goals. Simulations used code from the Superbot Simulator written by David
Brandt from the ISI

• Helping to assemble the Hardware-in-the-Loop simulator

• Recommendations for final testing procedures, and future work proposed

Author:
Rowan McAllister

Supervisor:
Dr. Robert Fitch

iii

To Mum, Dad, Marion and Emily

iv

Table of Contents

Table of Contents v

Abstract ix

Acknowledgments xi

Preface: Team Context xiii

List of Acronyms xv

List of Figures xxiv

List of Tables xxv

List of Algorithms xxvii

1 Introduction 1
1.1 Motivation . 3

1.1.1 Benefits of Modular Robots . 3
1.1.2 Applications . 4

1.2 Problem Statement . 8
1.2.1 Ultimate Goal . 9

1.3 Challenges . 10
1.4 Approach . 11

1.4.1 Assumptions . 12
1.5 Summary of Results . 13
1.6 Thesis Outline . 14

2 Background: SRR Hardware 15
2.1 History . 15

v

2.2 Module Design . 18
2.2.1 Types of Modular Robots . 19

2.3 Hardware Review . 23
2.3.1 What Constitutes a Good Design? 24
2.3.2 Connection Mechanisms . 25
2.3.3 Case 1: ATRON . 27
2.3.4 Case 2: MTRAN . 30
2.3.5 Case 3: Superbot . 35
2.3.6 Case 4: Roombot . 36

3 Background: Reconfiguration Planning 41
3.1 Introduction . 42

3.1.1 Native Kinematics . 43
3.1.2 Decentralized Nature . 44
3.1.3 Connectivity Concept . 44
3.1.4 Common Challenges . 46
3.1.5 Hierarchical Methods . 49

3.2 Reinforcement Learning . 50
3.2.1 Overview . 50
3.2.2 Exploration vs. Exploitation . 54
3.2.3 Dynamic Programming . 55
3.2.4 MAXQ . 58

3.3 Comparison of Existing Planners . 61
3.3.1 Stochastic vs. Deterministic . 63
3.3.2 Metamodules vs. Modules . 65
3.3.3 Homogeneous vs. Heterogeneous 67
3.3.4 Centralized vs. Decentralized . 67
3.3.5 Serial vs. Parallel . 68
3.3.6 Simultaneous Actuation . 69
3.3.7 Max. modules helper aids . 69

3.4 Case 1: Fracta Planner (1994) . 70
3.4.1 Representation of a Fracta . 71
3.4.2 Representation of the Fracta cluster 72
3.4.3 Algorithm . 73
3.4.4 Experimental Results . 76
3.4.5 Discussion . 76

3.5 Case 2: MTRAN Planner (2002) . 77
3.5.1 Algorithm . 79
3.5.2 Discussion . 81

3.6 Case 3: Claytronics Planner (2006) . 82

vi

3.6.1 Algorithm . 85
3.6.2 Experimental Results . 88
3.6.3 Discussion . 89

3.7 Case 4: Million Module March (2008) . 91
3.7.1 Cubic Metamodules . 93
3.7.2 Algorithm . 93
3.7.3 Discussion . 96

3.8 Case 5: Graph Signature (2008) . 97
3.9 Conclusions . 102

4 Centralized Planning for 3R-Type Modules 105
4.1 Problem Definition & General Approach 106

4.1.1 Terminology . 110
4.2 State Space Reduction . 111

4.2.1 Lattice Structure . 111
4.2.2 Module Isomorphisms . 113

4.3 State Representation . 115
4.4 Motion Primitives . 118

4.4.1 Helper Modules . 118
4.4.2 Simultaneous Actuation . 125

4.5 Algorithm . 127
4.5.1 GUI . 128
4.5.2 Tile Pattern . 131
4.5.3 Global Search . 135
4.5.4 Connectivity Checker . 137
4.5.5 Local Search . 142
4.5.6 Transition . 146
4.5.7 Collision Detection . 149
4.5.8 Translation . 156

4.6 Evaluation . 158
4.6.1 Analysis . 158
4.6.2 Examples . 164

4.7 Discussion . 176

5 Decentralized Planning for 3R-Type Modules 179
5.1 Algorithm . 181

5.1.1 Local Search . 181
5.1.2 Message Passing . 191
5.1.3 Parallelization . 193

5.2 Evaluation . 195

vii

5.2.1 Analysis . 195
5.2.2 Examples . 197

5.3 Discussion . 204

6 Conclusions 207
6.1 Summary of Work Completed . 207
6.2 Implications of Thesis . 209
6.3 Future Work . 210

6.3.1 Hardware Experiments . 210
6.3.2 Roombots . 211
6.3.3 Full Generalization . 211

A Index to Multimedia Extensions 213

B Extra Routines 215

Glossary 217

Bibliography 221

viii

Abstract

Self-Reconfiguring Robots (SRR) are composed of many modules that have the ability to

autonomously attach and detach, enabling adaptation to a variety of tasks in unknown sur-

roundings. In order to change shape into a particular form, an SRR must plan a sequence of

module movements. This reconfiguration problem is challenging because of the many me-

chanical degrees of freedom and the resultant large number of possible SRR configurations

which contribute to a vast and high-dimensional search space. To support the operation

of an SRR in a practical environment, reconfiguration planners must satisfy a number of

properties including decentralized computation, parallel motion of modules, real-time exe-

cution and planning in the native kinematic space of the module mechanism. The ultimate

solution would be a general planner that solves reconfigurations of arbitrary module de-

signs in this way. This thesis has taken a step in this direction of generality by developing a

reconfiguration planner of the 3R module that is easily instantiable to other module types.

The planner is scalable and decentralized, and considers the native kinematics of a module.

It demonstrates the ability to coordinate the parallel motion of modules and executes in

real-time. The thesis presents both centralized and decentralized implementations of the

algorithm along with performance evaluation for several reconfiguration examples, as well

as an analysis of achievable SRR reconfigurations.

ix

x

Acknowledgments

I would like to thank Robert Fitch, my supervisor, for his many suggestions and constant

support during this research.

I am also thankful to my fellow honors students: Ben Itzstein, Brandon Navra and

Michael West, for their valuable feedback during the seminar period and help on many

technical problems. I had the pleasure of meeting Ritesh Lal, another member of our

modular robotics team, whose expertise in the hardware components enables myself to

generate real world results in testing. This thesis also made use of the Superbot simulator

written by David Brandt under the auspices of ISI.

Of course, I am grateful to my parents for their patience and love. Without them this

work would never have come into existence.

Finally, I wish to thank the following: Hugh for his interest, encouragement and

feedback, Andrew (for being there, and ironically enough; keeping me sane), Monica and

Stace (for all the coffees and being great people to live with), Behny for your patience, John

for your enthusiastic help in editing, Davo, Taro, Kay, Sandy, Daniel, Tim, Stirling, Alice,

Yannick, Ang, Jenny, Chris, Ben, Evan, Jill, Prabhat, Paul, Mick, Mugs & Mike.

Sydney, New South Wales Rowan McAllister

November 5, 2009

xi

xii

Preface: Team Context

This thesis is part of a team effort at the ACFR. There are three other undergraduate honors

students involved in this project on modular robots. Their thesis focuses are:

Ben ITZSTEIN: Stability, Reconfiguration Planning

Reconfiguration planning of generalized modules with attention on a robot’s static stability.

In contrast this thesis planner plans in native kinematic space, using the specific hardware

design of a non-generalized module to reconfigure.

Brandon NAVRA: Localization

An investigation of robot localization using ultra-wide band (UWB) radar technologies to

sense changes in an environment as well as establish communication networks between

other robots. This focuses on using UWB radars to localize a team of modular robots.

Michael WEST: Stability

A focus on static stability during reconfiguration, a challenging open problem as modules

move asynchronously and in parallel. It presents a stability checking algorithm based on

dynamically fusing position data from each module to obtain estimates of the mass center

and the convex hull of the robot’s footprint.

xiii

xiv

List of Acronyms

ACFR Australian Center for Field Robotics

ACW Anticlockwise

BFS Breadth First Search

CSRP Centralized Self Reconfiguring Planner

CW Clockwise

DFS Depth First Search

DOF Degrees Of Freedom

DSRP Decentralized Self Reconfiguring Planner

EPFL Ecole Polytechnique Fédérale de Lausanne (Swiss Federal Institute of Technology

in Lausanne)

GUI Graphic User Interface

IDFS Iterative Depth First Search

LSN Local State Network

xv

xvi

MMM Million Module March

RL Reinforcement Learning

SD Secure Digital memory card

SMA Shape Memory Alloy

SRP Self Reconfiguration Program

SRR Self Reconfiguring Robot

UWB Ultra Wide Band radar

List of Figures

1.1 A MTRAN based robot in various configurations, from AIST [20] 2

1.2 An artist’s depiction of chain-type modular robots cooperatively assem-

bling a truss structure in space, from Zykov et al. [55] 5

1.3 Two possible configurations of a Modular Robot 10

1.4 State-Network Visualization . 11

2.1 “Mechanical deformation test for five ATRON modules connected in a hor-

izontal chain using four connectors. Top: FEM analysis displacement plot.

Displacement is exaggerated for visualization. The color shows the dis-

placement of each element caused by gravitational pull. Deformation of

the outmost module is about 1.4 mm. Bottom: Real-world deformation

test. The horizontal line was put onto the picture after it was taken. Mea-

surements show a displacement of the outmost module of about 3 mm”,

from Østergaard et al. [33] . 21

2.2 Left: Fracta’s connection mechanism, Right: Same mechanism used for

locomotion, from Østergaard et al. [33] 26

xvii

xviii LIST OF FIGURES

2.3 Two mechanical connector designs. Left: I-Cube’s connectors that inserts

and rotates a pronged pin to lock itself to a female connector. Right: Poly-

bot G2’s hermaphroditic connectors, using 4 pin/hole pairs over a greater

surface area provides increased torsional stiffness and redundancy, from

Østergaard et al. [33] . 27

2.4 ATRON robots shown in snake and buggy morphologies, from Østergaard

et al. [33] . 28

2.5 ATRON Connector Positions, from Østergaard et al. [33] 29

2.6 ATRON Internal Looping Movement Possible, from Østergaard et al. [33] . 29

2.7 MTRAN Schematic, from Murata et al. [28] 30

2.8 MTRAN I and II connection mechanism, from Murata et al. [28] 31

2.9 MTRAN native methods of locomotion, from Murata et al. [28] 33

2.10 Two Superbot Modules. Leftmost module is oriented like a MTRAN mod-

ule, the rightmost is like a CONRO module, from Shen et al. [40] 35

2.11 Design of Superbot. Left: connector placements. Right: Exploded view

showing 3 joints that are the degrees of freedom, from Shen et al. [40] . . . 36

2.12 Roombot Schematics, from Sproewitz et al. [41] 37

2.13 “Possible grid-reconfigurations with two Roombots modules connected in-

series. The resulting shapes depend on the axis-orientation of the two cen-

ter blocks, colored in orange: (a) Skew: 5 options, I-, L-, 3DS-, S- and

U-shape. (b) Parallel, 4 options. (c) Orthogonal, 4 options”, from Sproe-

witz et al. [41] . 40

3.1 A module 3-R module with three degrees of freedom, from Fitch and Butler

[14] . 43

LIST OF FIGURES xix

3.2 Connectivity Concept . 45

3.3 (a) a modular robot attempts to fill wireframe box with one of its own

modules, (b) it cannot use a middle module as this would violate global

connectivity . 46

3.4 Reconfiguring MTRAN: Resting on flat ground in which this robot can

move over, it is possible to reconfigure from configuration (a) to (b) but not

(a) to (c), from Murata et al. [28] . 47

3.5 MTRAN pivot translation (rotation about Y direction). A single atomic

action results in 6 adjacent cell movements, from Murata et al. [28] 48

3.6 Interaction between an agent and its environment, from Sutton and Barto [44] 51

3.7 Optimum policy evaluation & improvement; an example where grey cells

indicate goal regions (value 0) and an agent in any other cell can move

horizontally or vertically one cell per episode 57

3.8 Subroutine hierarchy example of MAXQ 60

3.9 Example of MAXQ without global optimality 61

3.10 Fracta connection-type diagrams, from Murata et al. [26] 71

3.11 Example Fracta cluster, from Murata et al. [26] 72

3.12 Simulated steps of a reconfiguration, from Murata et al. [26] 74

3.13 Compositional structures of modules of the MTRAN planner, from Yoshida

et al. [53] . 78

3.14 Block (metamodule) Relocation of an MTRAN robot, from Yoshida et al.

[53] . 80

3.15 MTRAN Global/Local Reconfiguration Planner, from Yoshida et al. [53] . 81

xx LIST OF FIGURES

3.16 Direction change of a surface moving module from (a) to (b) via converter

cooperation, from Yoshida et al. [53] . 82

3.17 Claytronic module prototypes (2005), from Goldstein et al. [19] 83

3.18 Hole basics: a) hole, b) shepherd modules (dark), c) direction of motion,

from De˜Rosa et al. [36] . 84

3.19 Expanding edge by creation of a hole, from Goldstein et al. [19] 84

3.20 Contracting edge by deleting a hole, from Goldstein et al. [19] 85

3.21 Tri-regions: left and centers tris are set for growth, the rightmost for dele-

tion, from De˜Rosa et al. [36] . 86

3.22 Starvation example in absence of smoothing effects. Regions a and b pre-

vent region c from forming a hole to delete itself, from De˜Rosa et al. [36] . 86

3.23 Experiments performed on reconfigurations between these shapes, from

De˜Rosa et al. [36] . 89

3.24 Shape compliance of Claytronic experiments over time, from De˜Rosa et

al. [36] . 90

3.25 A Million Module March robot, initiating a reposition, from Fitch and But-

ler [14] . 92

3.26 Sliding-cube movements possible, from Fitch and Butler [14] 93

3.27 Connecting cycles, from Fitch and Butler [14] 94

3.28 Navigation function pointing the direction of an optimal path for surface

moving module to travel into the goal region, from Fitch and Butler [14] . . 96

3.29 Searches using a similarity metric, from Asadpour et al. [1] 98

3.30 Reconfiguration Experiment Two, from Asadpour et al. [1] 100

LIST OF FIGURES xxi

3.31 Computation time of a reconfiguration from a line to a ring, from Asadpour

et al. [1] . 100

3.32 Reconfiguration Experiment One, from Asadpour et al. [1] 101

3.33 Computation time of a reconfiguration from a line to a ring, from Asadpour

et al. [1] . 101

3.34 Computation time of a reconfiguration from a line to a ring, from Asadpour

et al. [1] . 102

4.1 A line of six 3R modules reconfiguring into a stick figure 107

4.2 State-Network Visualization . 109

4.3 A module 3-R module with three degrees of freedom, from Fitch and Butler

[14] . 114

4.4 (a) A modular robot is in need of a helper module to fill wireframe box. (b)

it cannot use a middle module as this would violate global connectivity . . . 119

4.5 Helper module assisting a mobile module to relocate to the wireframe box . 121

4.6 Helper module’s proximity . 124

4.7 Simultaneously actuated motion of a MTRAN module to avoid a collision,

(edited) from Murata et al. [28] . 126

4.8 Program Flow: Organization of CSRP routines 129

4.9 GUI and corresponding modular robot: Initial state 130

4.10 GUI and corresponding modular robot: Reconfigured state 130

4.11 Domino Tiling . 133

4.12 Tile Pattern case examples; (a) an impossible shape, (b) a possible shape,

(c) tiling with horizontal tile preference, (d) tiling with vertical tile preference133

xxii LIST OF FIGURES

4.13 One module acting as two helper modules, (a) default position, (b) & (c)

show possible configurations of one helper module, (d) & (e) show possible

configurations of the second helper . 140

4.14 State network example: desirability values mark each state for a mobile

module to consider (states are represented by circles, and module actions

are represented by lines which link states) 143

4.15 An example of Superbot performing a simultaneous move, in which the

unconnected part always has its face directed in the same direction 147

4.16 Unconnected part actions (view along spin axis) 150

4.17 Actions 2 & 3: connected part turning 90 degrees: parallel part axles (view

along spin axis) . 151

4.18 Actions 2 & 3: connected part turning 90 degrees: perpendicular part axles

(view along spin axis) . 151

4.19 Action 6: both parts turn simultaneously, both axle parts must be parallel

(view along spin axis) . 151

4.20 Collision detection: encroached-cells from one part’s transition though

space by 90 degrees, starting at cell ‘S’ and finishing at cell ‘F’. The dotted

cell represents the center of rotation . 152

4.21 Collision detection: try-cells. From collision detection search’s current cell

it has checked, it will progress to one of these try-cells in an order as shown

by the numbers to find the next cell that this part will encroach on. (A part

starts at cell ‘S’ and finishing at cell ‘F’. The dotted cell represents the

center of rotation) . 154

LIST OF FIGURES xxiii

4.22 Collision detection: forbidden-cells. These marks the beginning and end

of an ‘encroached cell search’ that the search should not go beyond. (A

part starts at cell ‘S’ and finishing at cell ‘F’. The dotted cell represents the

center of rotation) . 155

4.23 Shapes chosen for reconfiguration examples 164

4.24 Reconfiguration example: Line-to-Ring 166

4.25 Failed reconfiguration example: Ring-to-Line 167

4.26 Reconfiguration example: Line-to-Box . 168

4.27 Reconfiguration example: Line-to-Superbotman 169

4.28 Reconfiguration example: Line-to-Sidestack (Part 1 of 2) 170

4.29 Reconfiguration example: Line-to-Sidestack (Part 2 of 2) 171

4.30 Successive relocations: Line-to-Sidestack, 4 modules 174

4.31 Sequence of line-to-sidestack reconfigurations showing CSRP’s quadratic

relationship between execution time and number of modules present 175

5.1 Visual aid of the decentralized organization of the network or states 183

5.2 Navigation function spread throughout a DSRP state network 186

5.3 Concavity . 187

5.4 Visual aid of the decentralized state network that has a concavity. Dupli-

cated states are colored blue and identified by numbers. Shown are two

instances of state-1 and two instances of state-2 188

5.5 Example of state network fragmentation. Shown is a global state network

(module domains not shown) . 189

5.6 Experiment D7 . 198

6.1 Hardware in the Loop Simulator . 210

xxiv LIST OF FIGURES

List of Tables

3.1 Comparison of Selected Reconfiguration Planners 62

4.1 Action Index . 148

4.2 Reconfiguration Statistics Compiled for CSRP Examples of 6 modules . . . 172

4.3 Reconfiguration Statistics Compiled for Reversed CSRP Examples of 6

modules . 173

4.4 Reconfigurations: Line to Sidestack . 175

5.1 Comparison of CSRP and DSRP . 180

5.2 DSRP Message Types . 192

5.3 DSRP Experiments . 199

5.4 Message Statistics from Experiment D7 201

5.5 DSRP and CSRP comparison . 202

A.1 Index to Multimedia Extensions . 213

xxv

xxvi LIST OF TABLES

List of Algorithms

3.1 Dynamic programming: Iterative policy evaluation, (edited) from Sutton

and Barto [44] . 56

4.1 Tile Pattern . 135

4.2 Global Search . 138

4.3 Connectivity Checker . 141

4.4 Local Search: Find Path . 145

4.5 Local Search: Execute Path . 145

4.6 Collision Detection . 157

5.1 Decentralized state network constructor 185

B.1 Encode State . 215

B.2 Decode State . 216

xxvii

Chapter 1

Introduction

“The one who adapts his policy to the times prospers, and likewise that the one whose

policy clashes with the demands of the times does not” - Niccolo Machiavelli

Adaptability has always been a key trait to continued success. If any entity can either

alter itself or its methods to better suit new conditions in its environment, it will either

live on or experience continued use. Modular robotics has been a significant step in this

direction for robotic design. In contrast to conventional robotic designs, which use fixed

morphologies and have a limited repertoire of performable tasks, modular robots can adapt

and assume different shapes to better suit their environment, new tasks or when they need

to change location.

Conceptually, modular robots are similar to Lego R© where one has many similar parts

which can clip together to form a particular structure. Furthermore many different struc-

tures are possible, such as those shown by Fig. 1.1 of a 4-legged walker, cylinder or tank

tread.

A key advantage of modular robotics is that their configuration is never permanent.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: A MTRAN based robot in various configurations, from AIST [20]

They can always be pulled apart into their separate modules, and these modules can be used

again to build a completely new robot. A Self Reconfiguring Robot (SRR) is a modular

robot which changes its own configuration autonomously. Such ability could prove very

useful for a robot in the field far from external help.

An SRR reconfiguration poses a computational problem: the robot must have a method

of instructing each module about how it should move and at what time to reconfigure cor-

rectly. Although there are many different video examples of SRRs demonstrating change

of shape, these are the result of manually coded algorithms which have been coded for

specifically predetermined action sequences. Gait tables have also been used. Gait tables

map a limited set of situations and designate a specific set of action responses for the robot

which fit with those particular situations. Some of these gait tables, such as Polybots ped-

aling of a childs tricycle [51, p.33] have demonstrated some impressive results. However,

to fully achieve true autonomous reconfigurations, an SRR requires a Self Reconfigura-

tion Program (SRP). Currently several SRPs exist with one of two shortcomings; they are

purpose-built and limited to use on a particular module design, or they are overly generic

1.1. MOTIVATION 3

so as to encompass many module designs at the gross expense of reconfiguration efficiency.

Our vision is a general planner that is completely ‘kinematically aware’ of arbitrary module

designs inputted to act a ’purpose-built’ SRP for SRRs of all module-types. This combines

the advantages of encompass many module designs with the reconfiguration efficiencies

achievable by purpose-built SRPs. This is the fundamental algorithmic challenge in the en-

tire field of SRRs. The purpose of this thesis is to help progress the field towards generality.

1.1 Motivation

The development of a fully autonomous SRP can significantly improve the overall auton-

omy of a modular robot, enhancing the robot’s efficiency and utility. The motivation for this

lies in the new and unique benefits that modular robotic systems can offer society. Modular

robots have several key aspects of their inherent design that makes them extremely adapt-

able, robust and potentially cost effective. These strengths lead to several interesting future

applications, particularly in space exploration and disaster relief.

1.1.1 Benefits of Modular Robots

Adaptability

This can be seen if such a robot were to transverse a landscape of varying terrains. For

flat ground, a self-propelling tank tread configuration (Fig. 1.1, rightmost configuration)

could be used to travel quickly. However as the terrain becomes increasingly uneven, a

multi-legged robot configuration would be more adept at climbing over rocks or straddling

ditches. Additionally snake-like configurations have shown to be very capable at swimming

and crawling through small gaps if the robot came across a river or thick scrub [6, 48].

4 CHAPTER 1. INTRODUCTION

Fault Tolerance

SRRs have a high degree of redundancy. In a homogeneous SRR, every part of the robot

is the same as every other part, so there is never one part of the robot critical to its overall

operation. If the robot is damaged in a certain area, it can simply discard the broken mod-

ules and replace them with any other modules in the system, and continue on as normal.

This method of self-repair still enables the SRR to achieve close to previous performance,

especially if it had many modules to begin with, allowing for graceful degradation of the

system. It makes for an extremely robust robot design, with a large potential for recovery.

Cost Effectiveness

SRRs have the potential to be made at low cost if the demand for them is high enough.

Being comprised of similar modules, the mass production of these modules is entirely

realistic.

1.1.2 Applications

Modular robots could never be expected to work as fast or as precise as a factory robot

designed for a particular task in a controlled environment, but their value is displayed in the

ability to perform a wide variety of tasks, many perhaps unanticipated by initial designers,

in uncontrolled environments. The current state of the modular robotics field is still in its

infancy, however with further development several applications have been proposed [49]:

Space Exploration

Autonomous machines in space exploration are confronted with a variety of special chal-

lenges. Firstly, all cargo transported via shuttle is subject to strict dimensional constraints

1.1. MOTIVATION 5

Figure 1.2: An artist’s depiction of chain-type modular robots cooperatively assembling a
truss structure in space, from Zykov et al. [55]

6 CHAPTER 1. INTRODUCTION

for packing reasons. Since modular robots can assume arbitrary shapes they could be ex-

pected to meet these constraints as long as they do not exceed them by volume. Addition-

ally if the robot was the last object to pack, its packing flexibility could be taken advantage

of by filling some irregular cavity in the cargo assortment that no other object could be

expected to fill.

Secondly many unmanned exploratory space missions are one-way [7], where a vessel

must make do with any mishaps it encounters without hope of external repair or mainte-

nance. Hence robustness and the ability of self repair counts for a lot, but adaptability can

certainly help a robot from getting into trouble in the first place. For example both the

Spirit and Opportunity Mars Rover missions nearly met with disaster when hit by a severe

dust storm in June of 2007 [30] . Both rovers were covered in layers of dust, blocking much

of the sun’s light reaching their solar panels. Spirit’s power generation was reduced to just

18.3% of normal supply. Another dust storm in November 2008 further reduced this level

to 12.7% which was just above the critical levels of power needed to run internal heaters

protecting scientific equipment onboard [31]. Unfortunately even though both storms were

predicted the rovers could not do anything to protect their panels from the dust. In this case

a modular robotics design could be at an advantage being able to form a protective shell

around any such solar panels and waiting the storm out.

Additionally the designers of the Martian Rovers were able to take advantage of a

wealth of knowledge of Mars’ terrain from the many previous probes sent to Mars in devel-

oping the Rover design [7]. First-time missions to new planets or moons could not expect

the same luxury. An interesting mission would arguably be one to the geologically active

moon Titan orbiting Saturn. In 2004 the CassiniHuygens mission discovered the presence

of liquid hydrocarbon lakes over the surface of Titan. In addition to weather conditions of

1.1. MOTIVATION 7

wind and rain which fluctuate seasonally, the moon has a variety of landscapes including

ice, sand dunes and rocky outcrops [43]. If a ‘Titan-Rover’ was developed similarly to the

Spirit or Opportunity and landed over one of these lakes, it may not fair so well, however

modular robots (once configured correctly) have shown to be very capable swimmers [48].

In addition a modular robot would not be as bounded by the different terrains or as suscepti-

ble to varying weather conditions as a fixed-design Rover would. It could thus be expected

to travel to a variety of locations and discover more about Titan’s dynamic geology than a

Rover.

Even at low to medium earth orbits where it is possible to send technicians to repair or

modify equipment such as satellites, the Hubble space telescope or the International Space

Station, the financial cost of doing so is considerable, where the cost of launching a shuttle

launch is US$450 million on average (2008 dollars) [32]. So robustness of design is still

paramount in any region of space, which is why using modular robots could be a significant

advantage to future space missions.

Disaster Relief

Modular robots could also potentially be used in instances of disasters, particularly col-

lapsed buildings. Often it is difficult to locate persons trapped under much ruble and even

if they are it can be very hard to aid them until excavators have removed obstructing ruble.

In cases like these, modular robots have the ability to be fed single file through a small

gap and later morph into something more useful once inside a cavity where a survivor

lies. From here it could possibly provide temporary medical assistance, help move debris

the survivor is trapped under or even serve as a communications channel between rescue

workers and the survivor.

8 CHAPTER 1. INTRODUCTION

Bucket of Stuff

Lastly a bucket of Stuff has been proposed by many modular robotics groups. This is a

general idea that in the future, a regular person may store a bucket of modules in their

garage and use it as a general-applications robot for mundane tasks like cleaning gutters,

feeding the dogs, guarding the house etc. It could also be used to form any static object for

temporary use such as a chair, coffee table or ladder as required.

1.2 Problem Statement

To realize these applications a reliable SRP needs to be implemented such that an SRR can

at least reconfigure between configurations intended for its use. Ideally an SRP should be

able to reconfigure between arbitrary configurations. To achieve this, this thesis planner is:

• Decentralized & parallel: operates over a distributed network of module mi-

crochips planning the parallel motion of modules

• Executes in real-time

• Kinematically aware: considers a module’s native kinematics; all actions possible

of a given module design

• Scalable: requires a minimum of module movements such that reconfigurations

times are fast and energy is conserved

• General: is written as hardware-dynamic as time allows, ensuring that most, if not

all planner software is portable between robots of differing module types

1.2. PROBLEM STATEMENT 9

The completion of this thesis planner will serve two purposes:

1. A better scientific understanding of planning in SRRs

2. Use as a design optimization tool for the ACRF’s module. Since 1988 there have

been more than 25 complete and working designs of these modular units developed

around the world [33] [50, p.48]. At the Australian Center for Field Robotics (ACFR)

within the University of Sydney, there is a team of 11 1 working towards developing

a unique and independent module design of our own. At the present time there is

no theoretical underpinning that can compare module designs to determine which

would offer an SRR the most flexibility and efficiency in its reconfiguration options

[33, p.166]. However with a generalized planning algorithm that can plan SRR re-

configurations for arbitrary module designs, a comprehensive range of designs can be

tested in simulations of reconfigurations in order to determine the ‘optimum’ module

design

1.2.1 Ultimate Goal

An ultimate goal of this thesis is: ‘To create a decentralized program that can autonomously

plan arbitrary & parallel reconfigurations of homogeneous modular robots of arbitrary

module designs in native kinematic space’. The exact meaning of each term is explained

progressively throughout the next few chapters. This goal is an ambitious one and is not ex-

pected to be fully achieved however serves to continually direct the progress of this thesis’

SRP.
1At the time of this writing (9 Sept. 2009); 4 honors students, 1 PhD student, 2 engineering and a staff

supervisor, 3 international collaborators (EPFL Switzerland, University of Southern Denmark, Zach Butler
RIT) and a local collaborator

10 CHAPTER 1. INTRODUCTION

(a) state-A (b) state-B

Figure 1.3: Two possible configurations of a Modular Robot

1.3 Challenges

A major difficulty in reconfiguration planning lies in the myriad of unique configurations

an SRR can be in. As an example; the configuration labeled state-A is one possible config-

uration of a 10-module robot, and State-B is another. In order to change from State-A into

State-B, there is no one atomic action the robot can perform to do this, instead it will have

to pass through a host of interim configurations, as modules move about, to slowly extrude

out into the State-B shape.

To help visualize this reconfiguration task, of transferring from State-A into State-B, let

every unique configuration the robot can be in be represented as a single node (circle) in Fig.

1.4. State-A will be one of these unique configurations, and State-B will be another. The

black lines that link these nodes are indicative of actions which the robot can take, such as

one or more modules moving. Every time a module moves, the robot’s overall configuration

1.4. APPROACH 11

Figure 1.4: State-Network Visualization

is inevitably altered, which is represented here as a neighboring node; a transition to a

different configuration. This forms a searchable network of configurations or states, where

the nodes represent robot’s unique configurations, and the lines that link them represent

atomic actions the robot can take (module movements).

However this state-network grows exponentially with the number of modules the robot

is made up of. With ten 3-R type modules (Fig. 1.3), there are over 3.5 trillion trillion pos-

sible configurations this robot can be in, which becomes the size of the state-network that

needs to be searched, a formidable search task. At just 33 modules, this number exceeds

the number of atoms in our known universe2, so even a heuristic-based search like A-Star

cannot solve this problem.

1.4 Approach

To solve this problem of a massive searchable state space, this thesis has looked to hi-

erarchical planning. This helps divide up the main goal of finding a path between two

2approx. 1078 to 1082 [10, p.37]

12 CHAPTER 1. INTRODUCTION

configurations into a set of sub-goals that normal search routines can handle. If subgoals

can be placed at close intervals along the path from the present configuration to desired

one, regular search routines can be expected to link them up. And by connecting the dots,

a solution path is found.

A hierarchical search algorithm that has inspired the planning algorithm of this thesis

is Million Module March (MMM) by Fitch and Butler (2008) [14]. It is a general planning

algorithm that addresses the locomotion of SRRs made from many modules, represented

as sliding cubes. Beginning with an initial robot configuration it is able to coordinate many

surface modules to move simultaneously and converge into a given goal-shape without

relying on a global synchronization of movements. Additionally the time the algorithm

takes to execute planning is sub-linearly proportional to the number of modules (cubes)

present which makes for a very scalable program, enabling a single processor to plan for

robots of thousands or even millions of modules.

The MMM is similar in intent to the ultimate goal of this thesis; to develop a generalized

reconfiguration planner for SRRs of arbitrary modules design. However where the MMM

plans for generalized cubes, this thesis goal plans for modules of defined designs, taking

into account their structure and native kinematics and hence its implementation is very

different.

1.4.1 Assumptions

The assumptions made in developing this reconfiguration planner are:

• Friction between module movements can always be overcome by the module’s actu-

ators

1.5. SUMMARY OF RESULTS 13

• Module locations keep to their lattice (discrete) positions in 3D space

• Adjacent connectors are always aligned, and thus able to perform connection/disconnection

actions

To account for forces such as gravity and inertia that will inevitably effect module

movements, the planner makes a conservative assumption that module actuators have suf-

ficient torque to move a single module not including itself. A module’s actuators may well

have the ability to move several modules against gravity, this depends entirely on the hard-

ware design. However by limiting the planner to single module movements, it can expect

that such movements can be preformed wherever and whenever required without fail. This

is a reasonable assumption because modules with only enough torque to reorient them-

selves (and not other modules) fall prey to robot configurations which are impossible to

reconfigure, and a robot composed of such modules would be of little use.

1.5 Summary of Results

This thesis has resulted in a new reconfiguration planner (DSRP) that can solve arbitrary

robot reconfigurations of the 3R module. The DSRP is not fully general but can easily be

instantiated to other module types by similar approach because all high level DSRP routines

are general. This design is the first general purpose reconfiguration planner for the Superbot

module. It is also the first decentralized, real-time, non-metamodule planner of arbitrary

goals shapes that can additionally direct the parallel motion of modules. The DSRP is

efficient; its execution time is a constant time factor over that of the Million Module March

(MMM) algorithm which is the most scalable algorithm that exists for planning3. This

allows the design to plan for robots of many modules and still run in real time.
3the MMM algorithm has reconfigured 2.2 million modules in simulation [14]

14 CHAPTER 1. INTRODUCTION

1.6 Thesis Outline

This report proceeds with an introduction to SRR hardware in chapter 2 followed by an

overview of reconfiguration planning in chapter 3 including a survey of exiting SPRs4 and

review of reinforcement learning. Chapters 4 and 5 outline the approach this thesis took

to develop two planners, a centralized planner that moves modules in serial, and a decen-

tralized implementation that is able to move modules in parallel. Both chapters conclude

with an analysis and discussion of planner performance. Chapter 6 draws conclusions from

this thesis and discusses future work. The terminology of Self Reconfiguring Programs can

often appear esoteric, and so a glossary is located at the back for quick reference.

4Several surveys of hardware systems have already been published in the literature [23, 33], however no
such comparative survey has yet been published of Self Reconfiguration Programs even though many now
exist

Chapter 2

Background: SRR Hardware

Before progressing into the design aspects of this thesis’ reconfiguration planner, it is nec-

essary to review components of current literature that share common application. This

chapter begins with an introduction to the field of modular robots for the purpose of set-

ting all subsequent discussion into context. This review then progresses with an analysis

of existing module hardware, discussing some of the advantages, disadvantages and design

choices made by past module designers. Reconfiguration planning is tightly coupled to

module hardware. This is especially so when planning in native kinematics or in the design

of purpose-built planners of particular module designs. Hence this chapter also serves as

necessary the background for a discussion of self reconfiguration planners in chapter 3.

2.1 History

Modular robotics as a research field is still in its infancy, the first related publication pre-

sented in 1987 [16]. To shed light on the context of its development however, this section

firstly summarizes a brief history of general robotics.

15

16 CHAPTER 2. BACKGROUND: SRR HARDWARE

The first digitally operated programmable robot used in industry was Unimate used in a

General Motors assembly line in 1961 which “Obeying step-by-step commands stored on a

magnetic drum, the 4,000-pound arm sequenced and stacked hot pieces of die-cast metal”

[39]. From this demonstration of how programmable machines could be used to perform

certain tasks cheaper and with greater reliability and accuracy than human personnel, robots

soon experienced widespread use in manufacturing industries.

By the 1970’s, industrial robot use had spread to welding, paint spraying and grinding,

which required frequent replacements of the end effectors (manipulators), due to clogged

nozzles, worn grinding wheels etc. This gave rise to the ‘quick change’ end-effector design,

the use of standardized connection interfaces from which a manipulator (e.g. a nozzle)

could be detached completely and a replacement one reattached quickly and easily [50].

The ‘quick change’ design not only allowed for rapid replacement of manipulators but also

the rapid change of manipulators, so a grinding robot could become a sander or a buffer in

a short amount of time.

The advent of changeable manipulators certainly expanded the capabilities of some

robots, however not to a limitless degree. The majority of factory robots remain as fixed-

morphology designs to this day and thus are not fully adaptable to a wide range of different

tasks.

In 1987, a robotics researcher by the name of Toshio Fukuda saw great value in the

quick change mechanism and voiced how this concept could be extended from changing

just the end effector to being able to change any component of the robot’s hardware in-

cluding arm joints, power system, the mobile mechanism or even the software in his pub-

lication titled ‘Approach to the Dynamically Reconfigurable Robotic System’ [16]. Here

2.1. HISTORY 17

Fukuda outlined how this concept already exists in nature, drawing similarities between

organic cells and the robotic modules he was proposing. Cells can operate independently

and their local functions can be quite simple, but when they cooperate and self-assemble

into something bigger they can perform a vast variety of complex tasks. Organisms also

have the ability to replace cells as some inevitably die. Fukuda believed robotics could be

designed as such which would lead into next generation of robotic systems [17, p.1585].

Fukuda’s pioneering work in this field illustrated many of the challenges concerning

modular systems that are still open research topics today including [16]:

1. The communication methods between cells

2. The control method of the approach between two cells

3. The control method of the connection and detachment between two cells

4. The method for making optimal configurations depending on a given task

5. The detection method for the malfunctioning modules due to degradation

6. The control method for the restoration and the reconstruction. In case all functional

requirements cannot be met, some degrading control methods must be generated as

an alternative

Two of Fukuda’s papers published in 1988 [17, 18] that are more commonly referenced

explore solutions to the research questions he posed above, and in 1989 developed the first

design of a module; the CEBOT [18]. Fukuda has since been recognized as the pioneer of

‘modular robotics’ by the modular robotics international community.

18 CHAPTER 2. BACKGROUND: SRR HARDWARE

Since the field’s conception there have been over 300 publications in international jour-

nals and conference events [45] and more than 25 complete and working module designs

for modular robots developed [50, p.48].

2.2 Module Design

Modules are the building blocks of modular robots. There are currently many different

complete and working designs of modules around the world since the field’s conception in

1988, as shown by a comprehensive survey by Østergaard et al [33].

All module designs include at least 2 docking interfaces to form physically rigid con-

nections with other modules. This allows modular robots to form structurally stable con-

figurations, however these interfaces also provide means of hardwired communication and

power transfer between modules. Most modules can also bend in certain places, using

hinges which are controlled by a set of internal actuators. This allows modules several ‘de-

grees of freedom’ to swivel connecting faces around. These degrees of freedom amongst

individual modules form the basis in which a modular robot can reconfigure.

In addition to connection interfaces, hinge joints and actuators, modules can also be

outfitting with (but not limited to) the following components:

• Power Supply: To power the module’s active elements

• Microchip: For autonomous control

• Memory: To store procedures, current state information, etc.

• Sensors: To aid module-module docking, or perceiving nearby obstacles

2.2. MODULE DESIGN 19

2.2.1 Types of Modular Robots

There are several sub-categories modular robots can fall under [50]. Each of the following

examples have significant implications for the hardware and software design and impose

respective advantages & disadvantages to a robot. The two major classification types are:

• Architectural Classification: Dependent on geometric arrangements of connected

modules (e.g. Chain, Lattice, Hybrid, Mobile)

• Compositional Classification: The composition of module type(s) the robot is

based from (e.g. Homogeneous, Heterogeneous)

This thesis is specifically concerned with homogeneous hybrid modules.

Chain Architectures

Chain architectures (also Tree or Continuous architectures) are modular robots of string-

like topologies akin to robotics arms with joints at regular intervals. Each module joint can

move continuously between arbitrary angles such that an end effector can potentially reach

any point & orientation in space that does not exceed its arm length. The cost of this versa-

tility is computational complexity of control due to an infinitum of possible configurations.

Furthermore both motion and control are executed in serial only; a chain (or each branch

of a tree topology) is limited to performing one task at a time.

Because chain architectures do not exploit lattice regularity of module positions, they

are required to have some other methods of ensuring connector alignment when forming

new connections. Such methods rely on active sensing which can be more error prone, and

sensor based reconfiguration research is currently underdeveloped [33, p.171].

20 CHAPTER 2. BACKGROUND: SRR HARDWARE

Lattice Architectures

Lattice architectures (also Crystal or Discrete architectures) are designed to pack modules

together into 2D or 3D tessellations, such as regular cubic or hexagonal grid pattern, akin

to molecules in a crystal. All modules exist in one of the discrete locations defined by the

grid pattern except for those currently moving between locations. An advantage here in

software planning is that a program only ever need consider modules at discrete locations.

Module motion options are also discrete and bounded. This allows for tightly bounded

search spaces in which an SRP can feasibly plan module movements in parallel.

A disadvantage of this design is the gross limitation of module placements. Their posi-

tions cannot be fine tuned for any reason such as picking up an object or perform continuous

motions needed for tasks like welding. Additionally modules are never perfectly rigid and

will bend when forming cantilever shapes. If the end-most module moves outside lattice

tolerances, they can cause connection misalignments and module collisions. Østergaard et

al. conducted a test of the mechanical deformation of their ATRON design (sec. 2.3.3) as

seen in Fig. 2.1 exploring this effect.

Hybrid Architectures

Hybrid designs are the marriage of lattice and chain architectures combining the advantages

of each. A hybrid module’s exterior is as a lattice module to pack together in a grid pattern

if required, but module movements are not necessarily discreet. A hybrid module could

move part way such that its position (and those connected to it) does not align with a global

grid pattern. This is merely an option for the robot, to use its modules as chain-modules

if desired for precision tasks. This does incur the associated computations complexities

discussed, however it can always resort to a purely lattice architecture robot if desired.

2.2. MODULE DESIGN 21

Figure 2.1: “Mechanical deformation test for five ATRON modules connected in a hori-
zontal chain using four connectors. Top: FEM analysis displacement plot. Displacement
is exaggerated for visualization. The color shows the displacement of each element caused
by gravitational pull. Deformation of the outmost module is about 1.4 mm. Bottom: Real-
world deformation test. The horizontal line was put onto the picture after it was taken.
Measurements show a displacement of the outmost module of about 3 mm”, from Øster-
gaard et al. [33]

22 CHAPTER 2. BACKGROUND: SRR HARDWARE

Mobile Architectures

Mobile architectures (also Fluid architectures) are modular robots which allows self-division

into smaller independent modular robots that can coordinate to achieve some task using

swarm algorithms. When searching for an object, exercising this capability and reduce

time spent searching, however there is no guarantee the separated modular robots can con-

nect back together again if one gets stuck or loses the ability to communicate. The mobile

classification is not mutually exclusive to the above architecture types.

Homogeneous Compositions

Homogeneous composition refers to a modular robot constructed from only a single type/design

of a module. This makes for simpler reconfiguration planning as a planner does not have

to account for which different modules are located where.

Heterogeneous Compositions

Heterogeneous composition refers to a modular robot of two or more modules types. Plan-

ning is more difficult as mentioned above, although the combination of different modules

with differently placed degrees of freedom and connector interfaces can give rise to ‘exotic’

behavior that could not be replicated by a modular robot made from either module design

alone.

2.3. HARDWARE REVIEW 23

2.3 Hardware Review

A review of existing module designs is in order at this point, to compare certain differences

in module design and the ramifications those have in modular robot abilities verified by

experimental results. As mentioned in the problem statement for this thesis (sec. 1.2)

it is often difficult to predict how a module’s design will affect the multi-module robot’s

abilities, such as efficiency of reconfiguration. Though by examination of how existing

designs correspond to experimented multi-module robot performances, a picture can slowly

be built that gives at least some indication how certain module design choices affect the

macroscopic performances of modular robots.

This section focuses mostly on connector types and degrees of freedom in a module,

as these features determine a robot’s reconfiguration abilities. A good survey of 17 mod-

ule designs was compiled by Østergaard et al. that compared some of the geometrical,

electrical and physical properties of modules in order to formulate prudent design choices

for their own module ATRON [33]. However since this 2006 survey additional module

designs such as Superbot (2006) and Roombot (2009) have been developed. This section

concludes with a closer look at four selected designs; ATRON, MTRAN (3rd ed.), Super-

bot and Roombot. The ATRON (2006) and MTRAN (2000) designs represent some of the

more well known archetype design concepts that have been produced, extensively tested

and cited. Superbot (2006) and Roombots (2009) hold special significance for this thesis.

Superbot is the first module type to be tested with this thesis planner, chosen for its many

degrees of freedom (3), and Roombot’s are the first module hardware we hope to test this

planner with, outlined in chapter 6.

24 CHAPTER 2. BACKGROUND: SRR HARDWARE

2.3.1 What Constitutes a Good Design?

Several factors constitute a good module design. Like many things, mechanical simplicity

is often favorable to reduce cost and increase reliability.

Structural Integrity

Structural integrity is an important design factor in any type of robot to cope with any strain-

ing forces and torques, and modular robots are no exception. Good designs incorporate

rigid modules with stiff actuators to hold connected modules in place. The difficulty that

arises in lattice-type modules is that modules need to remain with certain lattice-positioning

tolerances in order to avoid collisions and be properly aligned to form connections. An ex-

ample of a cantilevered beam on ATRONS modules was seen in Fig. 2.1 where the end

module from a chain of five had diverged 3mm from its nominated position. Mechanical

strain in instances like this is a result of both the rigidity of the module’s shell and the

stiffness of a connection made between modules. Connection strength is commonly the

limiting factor or a robot’s overall stiffness and maximum tensile strength [28], and thus is

a critical part of a module’s design. Structural integrity minimizes module deviations from

lattice frameworks but equally important is the design considerations that permits larger

tolerances of deviation.

Reconfiguration Efficiency

Reconfiguration efficiency of a robot is dependent on module geometry, connector place-

ment and degree-of-freedom (DOF) placement. Module geometry encompasses the lattice

type it may conform to if any. The designers of MTRAN support the theory that double-

cube bipartite module designs provide more efficient reconfigurations than single-cube

2.3. HARDWARE REVIEW 25

monopartite modules [28]. Connector placement determines how a planner must ensure

global connectivity at every step of a reconfiguration. Symmetric connector placement is

often preferred by planners, as this can be used to reduce the search space. Usually the

more connectors the better as a rule of thumb (sec. 2.3.6). DOF placement determines the

morphology or a module; its ‘kinematic options’. Modules that only have DOFs parallel to

their connectors are unable to change their own orientation and require neighboring mod-

ules to help them do so [28, 33] (the issue of flavor, discussed sec. 2.3.3). As another rule

of thumb; usually the more degrees of freedom the better, as shown by Superbot’s perfor-

mance over MTRAN owing to its additional central DOF that MTRAN does not have.

2.3.2 Connection Mechanisms

Reliable connection mechanisms have been one of the most challenging aspects of modular

robotics to get right. The most dominate methods in the short history of modular robots

since CEBOT have to use magnets (permanent and electric) and/or pin & hole assemblies.

The use of magnets, especially electromagnets which can be controlled without any moving

parts is always an aesthetic design proposition however its main drawback is the continual

consumption of power to maintain an attachment. Pin & hole connection arrangements

only ever consume power when actively disengaging or engaging new modules. Their con-

struction however is mechanically complex, increasingly so if modular robotic research

heads in the direction of miniaturization towards micro and nano scales. Correct alignment

is an important concern for type of connector, but magnetic connectors can be rather for-

giving by absorbing small positional and angular misalignment errors between connecting

surfaces [28, p.438].

26 CHAPTER 2. BACKGROUND: SRR HARDWARE

Figure 2.2: Left: Fracta’s connection mechanism, Right: Same mechanism used for loco-
motion, from Østergaard et al. [33]

The Fracta module design [26] is unique in that its electro/permanent magnetic con-

nection mechanisms are also used for module locomotion, repelling or attracting itself to

neighboring modules as seen in Fig. 2.2. As such it has no need for any DOF, and there-

fore no actuators to control the DOFs, resulting in a very simple (albeit power hungry)

design. Purely mechanical assemblies of locks/hooks/grooves have been more popularly

however, with modules Metamorphic [9], Crystalline [38], Micro-Unit [54], Chobie [21],

CONRO [8], Polybot [51], M-TRAN (3rd gen.) [28], 3D-Unit [27], Molecule [24], I-Cube

[46], ATRON [33] compared to five module designs listed in the Østergaard’s paper [33]

using magnetic connectors. Out of these 11 mechanical connector designs, only Polybot

and 3D-Unit include hermaphroditic connectors. At first glance hermaphroditic connec-

tors may seem more attractive for planning purposes, albeit more complex mechanically,

as planning programs can always safely assume (i.e. no need to verify) that any two con-

nectors are able to form a connection. Happily, lattice regularity can prevent accidental

same-gender alignment from ever occurring by implicitly branding certain lattice cells as

male only and adjacent cells female only. The designers of MTRAN published findings of

this phenomenon [29], and is discussed in sec. 2.3.4.

2.3. HARDWARE REVIEW 27

(a) I-Cube Connector (b) Polybot G2 Connector

Figure 2.3: Two mechanical connector designs. Left: I-Cube’s connectors that inserts
and rotates a pronged pin to lock itself to a female connector. Right: Polybot G2’s
hermaphroditic connectors, using 4 pin/hole pairs over a greater surface area provides in-
creased torsional stiffness and redundancy, from Østergaard et al. [33]

2.3.3 Case 1: ATRON

ATRON is a monopartite lattice-based module of two hemispheres separated by an actuated

axle. This axle is its only degree of freedom, so to reorient it relies on neighboring modules

to have perpendicular axle directions, which can spin them to face a new direction. An

ATRON robot must have modules facing in all 3 Cartesian coordinate directions (x, y, z)

to be fully reconfigurable because of this effect. The designers referred to the 3 possible

orientations of modules as the flavors of modules, a robot would be made of x-ATRON,

y-ATRON and z-ATRON flavored modules.

The axle between both hemispheres is designed for infinite revolution. At the ‘equator’

of the module lies 5 concentric slip rings to allow for continuous transmission of power

and data between hemispheres (both hemispheres contain microchips) as they spin relative

to each other. The ATRON shape is ellipsoidal but by virtue of its connectors placements

it packs like a sphere. The designers opted for a less well known spherical packing pattern

they called “Rhenium Oxide” named after the pattern ReO3 forms naturally in crystals. It

28 CHAPTER 2. BACKGROUND: SRR HARDWARE

Figure 2.4: ATRON robots shown in snake and buggy morphologies, from Østergaard et
al. [33]

has a packing efficiency of 55.54% and has 8 equidistant connection points to other spheres

(modules) around it.

Designers of any connections interfaces generally choose one of two geometric types

of connector; multiple connection points spread over a surface-to-surface alignment of two

modules, or a single point-to-point connection as spheres do. surface-to-surface provides

greater torsional stiffness, though point-to-point allows more movement options in close

proximity of other modules. For example spheres are free to spin when packed tightly

together however cubes cannot. The ATRON design is an attempt to compromise between

both connection interface types, for the freedom of movement advantage and at least some

torsional stiffness. This is impossible to do if module-module connections first require flush

alignment of modules because surface-to-surface interfaces immediately collide with one

another. The ATRON design gets around this problem by separating connected modules

by a few millimeters as shown in Fig. 2.1. This separation is achieved by retractible

latches forming external connection that is offset from the module surface. Each of the 8

connection interfaces has a 3pin/hole connection points as shown in Fig. 2.5, the minimum

2.3. HARDWARE REVIEW 29

Figure 2.5: ATRON Connector Positions, from Østergaard et al. [33]

Figure 2.6: ATRON Internal Looping Movement Possible, from Østergaard et al. [33]

number of connection points to withstand torques in any direction.

One interesting property of the ATRON design is that collective motion of modules

is permitted within a fully packed structure of ATRONs. Fig. 2.6 shows how this might

happen; the four modules within the dashed circle can be turned 90 degrees by the rotation

of a 5th module they are mutually connected that has its axis direction facing into the page.

30 CHAPTER 2. BACKGROUND: SRR HARDWARE

Figure 2.7: MTRAN Schematic, from Murata et al. [28]

2.3.4 Case 2: MTRAN

MTRAN [28, 29] is a bipartite hybrid module, both parts are semi-cylindrical and each

fills one cubic cell within the robot’s cubic-lattice framework. Both parts are connected

by a common ‘link’. Fig. 2.7 shows a schematic of this. Dimensionally MTRAN is

66×66×132mm, runs on a 12V power supply, has a mass of 400g and use PI microcon-

trollers that communicate via asynchronous serial 4800bps connections. Only one module

in a cluster is connected to a power supply, and shares power to the other modules through

the connection interfaces. Thus a MTRAN module cluster must always stay connected and

is a non-mobile architecture module [53, p.912].

MTRAN has 2 axis of rotation (degrees of freedom), one located in each part. The

semi-cylindrical shape of each part allows them a 180 degree range of rotation. Both parts

are physically the same except for connector genders, and so both axles in either part are

parallel. This contributes to the same reconfiguration consideration discussed in ATRON

which required different flavors of modules (different module-axis orientations) to reorient

modules. Otherwise, reorientation is impossible and a MTRAN-based SRR cannot recon-

figure.

This module, developed at the MEL research institute in Japan has three generations;

2.3. HARDWARE REVIEW 31

Figure 2.8: MTRAN I and II connection mechanism, from Murata et al. [28]

MTRAN I and II used a used a magnetic connector type, the third generation opted for a pin

& hole assembly. The magnetic connectors, as seen in Fig. 2.8, are made up of a combi-

nation of permanent magnets, springs and shape memory alloy (SMA) coils. Connections

are formed by mutual attraction of permanent magnets from 2 modules, and is resisted

and dampened in part by non-linear springs that are engineering to be slightly weaker than

the magnetic force (about 25N). This force difference can be controlled by the SMA coils

which are heated to increase net repulsive force of the modules, and when it has made

up the magnet-spring force difference; the modules will detach. This however can take

5-15s to heat the coils and an additional 20-30s cool down period before able to form new

connections.

A magnetic connection between 2 connectors involves an active and passive connector.

The active is so named because it both controls the connection using the SMA coils, and

thus the only connector that consumes power. All MTRAN designs have 3 connectors

located over each part. The magnetic-connector generations of MTRAN (I and II) have

one ‘active’ part, of which all 3 connectors are active. The other part is completely passive.

32 CHAPTER 2. BACKGROUND: SRR HARDWARE

The pin & hole MTRAN III mimics this asymmetry with one part having 3 male connectors

and the other part purely female connectors.

Same-Gender Connection Avoidance

Intuition may lead one to believe that for planning purposes (and reconfigurations in gen-

eral); it is a disadvantage to have gendered connections instead of non-gendered/hermaphroditic

module connection interfaces. This is because any one connector is henceforth restricted

to forming connections with only half the available connectors around it. As the design-

ers of MTRAN found out, by virtue of a bipartite module within a lattice framework, this

never turns out to be a problem, because no sequence of moves could ever align two same-

gendered connectors anyway, even if they tried [29].

This is perhaps more clearly seen in Fig. 2.9, showing the three basic modes of locomo-

tion a MTRAN module can exercise. Two modes are self-moves seen in Fig. 2.9a & Fig.

2.9b, where the module can roll forwards or pivot sideways independently, and Fig. 2.9c

shows an example of cooperative behavior (sec. 4.4.1), where one module helps relocate

another. The middle pictures of both Fig. 2.9a & Fig. 2.9b show a module in mid move-

ment, but every other configuration depiction shows the modules conforming to the lattice

structure. Notice that white module is always located above a black module, no matter how

it moves, once in a new lattice cell, there are only black modules which is can connect to,

and using these set of moves it is actually impossible to align itself with a same-gendered

connector, given that all black connector genders will be opposite to all white connector

genders. Thus just as a checker piece can never change the color of cells it is adjacent to,

neither can a module part of a bipartite lattice-module.

The designers of ATRON were able to design their module in full knowledge of the

2.3. HARDWARE REVIEW 33

(a) Forward Roll, axis in x direction

(b) Pivot Translation, axis in z-direction

(c) Mode Conversion, axis in y-direction

Figure 2.9: MTRAN native methods of locomotion, from Murata et al. [28]

34 CHAPTER 2. BACKGROUND: SRR HARDWARE

previous MTRAN design, however theirs is a monopartite module. To the author’s knowl-

edge, there are two ways lattice regularity can still be exploited for monopartite module

designs:

1. By using the same mentality of the bipartite module case, which effectively brands

certain cells as ‘female only’ and adjacent cells ‘male only’ much like a 3D checker

board. For monopartite modules, they could be manufactured in two populations of

modules, one of male connectors only, and one purely female. This is however less

appealing as it requires the presence of members of both populations in the makeup

of a robot

2. ATRON’s method of gender parity where each module half has and two female two

male, where same genders are placed opposite (180 degrees) from each other. In

addition, modules of different flavors (axle directions) need to adopt a cyclic gender-

connector positioning policy, such as placing female connectors at the:

• x-direction sides of y-ATRONs

• y-direction sides of z-ATRONs

• z-direction sides of x-ATRONs

The gender parity is defined as ‘zero’ if conforming to the above, and ‘one’ if not.

A 90 degree rotation will change gender parity of a module half, including any other

module halves connected to it that revolved with it. So an even amount of module-

half movements is required to conserve gender parity, and by doing so an ATRON

robot can reconfigure without connection gender mismatches

2.3. HARDWARE REVIEW 35

Figure 2.10: Two Superbot Modules. Leftmost module is oriented like a MTRAN module,
the rightmost is like a CONRO module, from Shen et al. [40]

2.3.5 Case 3: Superbot

Superbot [40] is a very similar design to MTRAN and CONRO from which the designers

drew much inspiration. The major difference is an additional central axle connecting both

module parts which is infinitely revolvable, providing a third degree of freedom. This

central axle allows the Superbot to act either a MTRAN (part axis aligned) or a CONRO

(part axis perpendicular) module as seen in Fig. 2.10. Because Superbot has at least 2

degrees of freedom that are not mutually parallel, the flavor concept requiring differently

orientated modules does not apply. Thus it is possible for Superbot-based SRR which

begins in a state where all modules are facing the same direction to break the conformity

and reorient modules to face differing directions.

Connector placement (Fig. 2.11) is like MTRAN. The designers stated their mechani-

cal connection mechanism are genderless and also allow “considerable” tolerance for mod-

ule angle misalignment when forming connections, though details have not been published

[40, p.169]. The designers have also conducted some impressive experiments of gait move-

ments, showing how a Superbot robot can move like a snake, caterpillar, spider and even a

36 CHAPTER 2. BACKGROUND: SRR HARDWARE

Figure 2.11: Design of Superbot. Left: connector placements. Right: Exploded view
showing 3 joints that are the degrees of freedom, from Shen et al. [40]

rolling track that can propel itself at an average speed of 1.0m/s for over 500m on battery

power [22].

2.3.6 Case 4: Roombot

Roombots [41], like Superbot, are hybrid modules that conform to a cubic-lattice structure.

They compose of two cubic parts with highly rounded edges as seen in Fig. 2.12a.

The name ‘Roombot’ was developed as part of the designers’ vision for these modules

to be used within residential settings as transformable furniture. They propose that such

furniture could be static or interactive, such as a chair that walks or climbs stairs whilst

someone is seated on it. Presumably the module’s curvy ABS plastic surface and non-

pinching morphology (Fig. 2.12) would make them more suitable to regular human contact

than modules like MTRAN or Superbot.

A great benefit of Roombots is they have the option to be fitted with 10 hermaphroditic

active connection interfaces, so a connector is present on every face of the double-cube

2.3. HARDWARE REVIEW 37

(a) One Roombots mod-
ule

(b) Up to 10 ACMs (c) 3 main Mo-
tors/gearboxes

(d) 3 axes of rotation

Figure 2.12: Roombot Schematics, from Sproewitz et al. [41]

shaped module. Not only does this enable increased flexibility of reconfiguration and pack-

ing options for a planner, is also reduces planning complexity (space and time) by:

• Increasing the number of symmetries in the module, which means less considerations

required from a planner, and therefore reducing the searchable state space size (sec.

4.2.2)

• Surface moving modules can safely assume any side of the robot’s exterior is a possi-

ble connection point, it does not need to enquire where another module’s connectors

are specifically located

• When considering a desired shape to reconfigure into, a planner can assume such

a robot will be completely connected if every module is adjacent to at least one

other module, which is a very fast & simple check. Otherwise if connectors exist

on only some of the module faces (such as Superbot which has 6 connectable faces

out of 10), a conclusive check on a goal shape’s global connectivity is not so straight

38 CHAPTER 2. BACKGROUND: SRR HARDWARE

forward. A whole host of robot configurations will satisfy the given goal shape,

some will conserve global connectivity and some will not due to different connector

placements (Roombot does not have this problem, every configuration it can assume

within a given goal shape results in the same connector placements, namely every

face of its cubic parts). A planner may have to iteratively check many configurations

before it finds one that satisfies global connectivity unless a special purpose routine

can be developed that can somehow returns one globally connected configuration if

one exists for a given shape

Roombots have 3 degrees of freedom (Fig. 2.12d), each making use of slip rings to

be infinitely revolvable. Superbot in comparison has only one degree of freedom that is

infinitely revolvable (its central axle) whilst its other two axles are restricted to rotations

within a 180 degree range.

Their connection interfaces are hermaphroditic by virtue of a four-way symmetry of

pins & holes (Fig. 2.12a). Currently the designers are deciding between the benefits of

using 2 lathes or 4 per connection interface. Latches are built with fiber reinforced plastics,

which allows the 2 latch option to carry up to 16kg. This helps meet a primary design goal

which is that one module should always be able to move 2 additional connected modules

whenever it revolves about any of its degrees of freedom. This gives Roombots the ability

to form chain-arms of 3 modules long, with 9 axes of rotation total, enabling it can act as a

short manipulator that can position an end effector at any point in space within its reach and

be oriented in any desired direction. The minimum torque constraint this imposes on mod-

ule actuators, given each module is 1.4kg and 220mm × 110mm × 110m is 1.16Nm. To

overcome this, all actuator DC motor-gearbox combinations installed are rated to 5.0Nm

of torque.

2.3. HARDWARE REVIEW 39

Perhaps the most distinctive of Roombot’s feature is its arrangement of degrees of free-

dom as seen in Fig. 2.12d. Modules like MTRAN or Superbot in contrast are made using

axles that are either parallel or perpendicular to each other which an intuitive arrangement

for modules that operate within a cubic lattice framework. Roombot itself still conforms

to a cubic lattice however both its part-axles are 45 degrees offset from its central axle

connecting both parts. This gives rise to some interesting and unique morphologies as seen

in Fig. 2.13. These three figures depict different morphologies possible with two Room-

bot modules placed end-to-end in three different ways. Morphologies like these can be

discovered by native kinematic planners which take into account the inherent design of a

module, and thus are able to take full advantage of morphological options a module design

offers. Native kinematic program implementation is therefore usually more complex by

considering these specifics, but the pay-off is its potential to discover far more efficient

reconfiguration strategies than a more generic planner. Generic (non-native) planners are

less specialized but can be made compatible across several modules designs by restricting

module morphology options to ‘standard actions’; common actions that every module type

the planner uses is able to perform. An example of this is extending MTRAN’s planner for

the control of a Superbot based robot. A Superbot module has all the functional options

a MTRAN module has, yet also has a central axle (which MTRAN does not have). The

MTRAN planner can be used for both MTRAN and Superbot by simply not actuating Su-

perbot’s central axle, effectively making it a MTRAN module. In this case, the actions a

MTRAN module can perform are deemed the ‘standard actions’ for both modules. So even

though this planner performs legal reconfigurations for a Superbot SRR, it forsakes the use

of additional degrees of freedom, thus morphological options available to it, which could

otherwise help reconfigure the robot in less atomic actions saving time and power.

40 CHAPTER 2. BACKGROUND: SRR HARDWARE

(a) Axes orientation skew

(b) Axes orientation parallel

(c) Axes orientation orthogonal

Figure 2.13: “Possible grid-reconfigurations with two Roombots modules connected in-
series. The resulting shapes depend on the axis-orientation of the two center blocks, colored
in orange: (a) Skew: 5 options, I-, L-, 3DS-, S- and U-shape. (b) Parallel, 4 options. (c)
Orthogonal, 4 options”, from Sproewitz et al. [41]

Chapter 3

Background: Reconfiguration Planning

This chapter presents some of the underlying theory of reconfiguration planning to give the

reader some background information on this field before introducing a new design in the

following two chapters. This chapter begins with an introduction of common SRP con-

cepts, and progresses onto reinforcement learning which is receiving increasing attention

in the SRR field as a valid means of reconfiguration planning. A survey & comparison

of several existing planners is included for the purpose of identifying effective techniques

previously tested. This includes a discussion of the implications of the various SRP design

considerations surveyed. This follows with more detailed case studies of the five SRPs sur-

veyed. The review of these five particular planners does not constitute as a comprehensive

review of planners in general, but their mutually differing methodologies and originality of

designs illustrate the current variety of existing SRPs. These case SRPs are:

1. Fracta Planner (1994)

2. MTRAN Planner (2002)

3. Claytronics Planner (2006)

41

42 CHAPTER 3. BACKGROUND: RECONFIGURATION PLANNING

4. Million Module March (2008)

5. Graph Signature (2008)

The Fracta, MTRAN & Claytonic planners are all purpose-built planners (unique to

one module design), developed by the respective designers of each module. None of these

developers gave explicit names to their planning algorithms, so they are referred to by their

module name in this paper. Fracta pioneered a lot of the reconfiguration planning field with

a strictly localized communication planner that relies on a simple yet novel self-assembling

reconfiguration process that is highly distributed. MTRAN is a well known module and

used a combination of hierarchical search and meta-module stacking to search effectively

and limit its own search space. The Claytronics planner opted for an unintuitive approach

of using holes like semiconductor physics (the absence of modules) for robot reconfigura-

tions. The last two cases are algorithms developed independently of the module designers.

Million Module march presents an efficient way of coordinating many generalized module

motions in parallel by the use of a special navigation function from reinforcement learn-

ing, and Graph Search looks at using aspects from graph theory to represent and solve

reconfigurations of a MTRAN-based modular robot.

3.1 Introduction

A modular robot’s ability to change shape is derived from a rearrangement process of the

multiple interconnecting modules which can attach and detach from each other. Reconfig-

uration planning is concerned with how to order such module movements such that an SRR

can reconfigure from shape-A into shape-B. This section discusses some of the common

aspects and challenges inherent to reconfiguration planning.

3.1. INTRODUCTION 43

Figure 3.1: A module 3-R module with three degrees of freedom, from Fitch and Butler
[14]

3.1.1 Native Kinematics

A reconfiguration planner needs to be able to plan module movements for the type of mod-

ule the SRR system is based on. To do this the planner needs to be able to glean two

important aspects of the design of the module it is considering:

1. Native Kinematics: from a particular configuration, where can a module possibly

move to next?

2. State Representation: what information is needed to fully define a module’s geom-

etry and kinematic options in 3D space?

Both these aspects are dependent on the module’s geometry and where its degrees of

freedom lie. To plan for a module that will reconnect and detach old connections as it moves

along the surface of the robotics structure then knowing the placement of the connector

interfaces is also crucial. The number of degrees of freedom can range from zero such

as in MEL’s Fracta module to six in another of MEL’s module the 3D-Unit [33, p.168].

44 CHAPTER 3. BACKGROUND: RECONFIGURATION PLANNING

Fig. 3.1 is an example 3-R module made up of two parts, each the same, connected by a

central axle, twisting which is one of the degrees of freedom. The remaining two degrees

of freedom are pins in either part placed perpendicular to the central pin. These allow both

parts to alter the direction they are facing. When both the native kinematics and the state

representation are defined, a planner is able to search through a module’s native kinematic

space for solutions as to how a module can move to another location, or reorient itself as

desired.

3.1.2 Decentralized Nature

Ultimately the algorithm needs to run onboard an SRR itself which acts as a multiprocessor

machine being composed of many modules each with a respective microchip(s). To take

full advantage of this, programs concerned with the robot’s whole need to be decentralized

in order to run in parallel over the many microchips. The most ideal case, is a planning

algorithm that can be decentralized to the point that each module need only consider its

local space when determining its next movement, and be independent of the global config-

uration of the SRR so as to minimize long distance module-module communication which

incur significant time delays. In this case there would be no limit to the amount to mod-

ules allowed in the system, as the computational complexity of running the program grows

linearly with the amount to microchips available to execute it.

3.1.3 Connectivity Concept

Connectivity is the physical linkage of modules. Global connectivity refers to a modu-

lar robot that is structurally a single piece by virtue of the various individual connections

linking composing modules. Global connectivity is a binary statement; a modular robot

3.1. INTRODUCTION 45

Figure 3.2: Connectivity Concept

is either globally connected (one piece), or it is not (meaning it is in multiple separated

clusters).

A connectivity verification function is often required by a planner to determine if a

certain module is able to uproot and travel to a different location in the robotics structure

without disconnection of the global structure. Global disconnection is usually extremely

undesirable as it is not guaranteed the robot can joint back together again, especially if

the robot is lattice defined and the result of a disconnection leaves two robot segments in

separate planes separated by several degrees. In this case the most connections mechanism

will be unable to reconnect if module faces are not already parallel and may not be able

to recover from the situation. This situation is especially undesirable if modules rely on

connectivity as a sole means for power distribution or (hard-wired) communication.

Figure 3.2 shows which modules are able to uproot and become mobile from a straight

line structure of 6 Superbot modules. Here if either end-module is able to be detached and

independently move over the structure however if any of the four middle modules did the

same thing global disconnection would be violated. Figure 3.3 shows an example of this

46 CHAPTER 3. BACKGROUND: RECONFIGURATION PLANNING

(a) (b) Global connectivity violated

Figure 3.3: (a) a modular robot attempts to fill wireframe box with one of its own modules,
(b) it cannot use a middle module as this would violate global connectivity

disconnection. If the configuration in Fig. 3.3a attempted to fill the wireframe box with one

of the modules and selected a module in the middle to do so, this would result in the two

globally disconnected structures shown in Fig. 3.3b. This is a potentially unrecoverable

situation.

3.1.4 Common Challenges

Good Heuristic Functions

Most Self-Reconfiguration Planners (SRP) incorporate heuristics; metrics that quantify the

difference between two configurations of a robot. SRP’s use heuristics as a feedback mech-

anism to guide search algorithms from a robot’s current configuration to the final by roughly

indicating if a particular search path is searching down set of states that are increasingly

3.1. INTRODUCTION 47

(a) (b) (c)

Figure 3.4: Reconfiguring MTRAN: Resting on flat ground in which this robot can move
over, it is possible to reconfigure from configuration (a) to (b) but not (a) to (c), from Murata
et al. [28]

distant from the goal configuration or not. A good1 heuristic is key to an efficient algo-

rithm, however as the MTRAN designers found out is often very hard to develop one for

3D anisotropic module designs such as the MTRAN module. They found that “for most

2-D lattice systems and for isotropic 3-D modules, there is a good correspondence between

distance in lattice space and distance evaluated as the number of necessary motion steps.

Therefore, the lattice distance can be used as a metric for those systems and it gives plan-

ning methods at reasonable cost” [28]. However they found that this relationship definitely

did not flow onto the 3D anisotropic module case and in fact “simple lattice distance gives

almost no information in the M-TRAN system” [28], MTRAN being a 3D anisotropic

module.

This can be seen in figure 3.4 which shows some possible reconfigurations of three

MTRAN units. A MTRAN robot cannot always reconfigure between different configura-

tions exampled by Fig. 3.4a and Fig. 3.4c due to the problem of flavors (sec. 2.3.3), but for

1a ‘good’ heuristic is defined as one which most reliably informs the planner as to the true reconfigurable
distance (number of atomic actions required) to transform one configuration into another. A perfect heuristic
will inform this distance exactly, a poor heuristic will report a distance that often very different from the true
distance but can still serve as somewhat of an indication

48 CHAPTER 3. BACKGROUND: RECONFIGURATION PLANNING

Figure 3.5: MTRAN pivot translation (rotation about Y direction). A single atomic action
results in 6 adjacent cell movements, from Murata et al. [28]

the reconfigurations which are possible (Figs. 3.4a to 3.4b) it takes 15 atomic actions for

the lower-left module to move up on top of the structure. Both parts have only moved 2 ad-

jacent cell spaces each, so 4 adjacent cell movements has translated to 15 atomic actions in

this instance. In contrast, figure 3.5 shows as just 1 atomic action is executed, it results in 6

adjacent cell movements. Thus a direct relationship between lattice distance (adjacent cell

movements) and atomic actions required to reconfigure is almost non-existent and makes

for an extremely poor heuristic.

Instead more inventive and often anti-intuitive heuristic definitions are required. Later

this chapter explores some case planners and how they have developed heuristics, often

tailored to a particular module design. These range from analyzing patterns of a mod-

ule’s connecting surfaces as to which are connected at any one time (Fracta), to borrowing

concepts found in graph theory (Graph Signature), and comparisons of current & desired

surface topologies of the modular cluster (Claytronics).

3.1. INTRODUCTION 49

Collision Avoidance

Collision detection is often difficult to design for and can be expensive to compute but

nevertheless mandatory for an SRP [1, p.869] [28, p.440]. Collision detection routines re-

quire geometric models of a robot and a complete understanding of a module’s kinematics

to predict collision events. The level of resolution these models are designed with deter-

mines the reliably of the prediction. If the SRR is lattice based then collision detection can

be computed more effectively; the 3D world is naturally segmented into discrete regions

which either do or do not contain a module and a module’s kinematics can be modeled by

a set relative lattice-cells the module encroaches for particular actions performed. Mechan-

ical strains can result in modules moving outside their lattice defined positions (sec. 2.2.1)

which complicates the detection process and remains an open problem.

3.1.5 Hierarchical Methods

Reconfiguration planning is a search task based in configuration space. The addition of

every module not only increases this space exponentially, but also increases its dimension-

ality owing to its degrees of freedom. The end result is a vast, highly dimensional space.

Hierarchical methods are a means of breaking down a search task into more manageable

subtasks to improve the chances of finding a solution, albeit not necessarily the optimal

solution. Hierarchical method have been proposed as a means of solving reconfigurations

[5, 14, 28, 34], especially for deterministic planners. A natural structuring of a hierarchical

search involves one subroutine that determines appropriate relocations of modules, and re-

locates them by routinely calling on a lower level subroutine to discover valid actions sets

that successfully relocate the module to its given goal position.

50 CHAPTER 3. BACKGROUND: RECONFIGURATION PLANNING

Reinforcement learning also poses several benefits to reconfiguration planning, whereby

a robot can steadily improve on the quality of reconfiguration solutions it computes. Hier-

archical reinforcement learning has been studied and offers accelerated learning opportu-

nities in large spaces. This hold potential application for reconfiguration learning [4, 12],

discussed in section 3.2.4.

3.2 Reinforcement Learning

Reinforcement Learning (RL) has been proposed as a means to assist robot reconfigurations

whereby modules gradually learn the complete morphology of one module or a collection

of modules by exploring all action-options available [42, 47]. Such learning methods can

reduce planning complexity and search space problems by relying on modules to inevitably

discover action protocols (the ‘details’) that lead to correct global reconfigurations. A good

survey of reinforcement learning and its applications can be found in Sutton and Barto’s

book (1998) [44]. This thesis is not wholly concerned with reinforcement learning but does

use value iteration methods from dynamic programming, a subbranch of RL, to construct a

navigation function that modules use for optimal path planning.

3.2.1 Overview

Reinforcement learning is a sub-branch of machine learning concerned with learning via

unsupervised interaction with an environment. Supervised learning is a large field itself,

where a learning agent can be trained to make better decisions with the help of an external

& more knowledgeable supervisor such as a human technician or higher level program.

This type of learning begins with a set of simulated training examples of input objects and

3.2. REINFORCEMENT LEARNING 51

Figure 3.6: Interaction between an agent and its environment, from Sutton and Barto [44]

desired outputs, as the agent attempts each example it can be given feedback straight away

as to its performance so as to calibrate itself for next time. Examples include classifica-

tion algorithms, artificial neural networks and pattern recognition. Unsupervised learning

however does not have this luxury. In this case the learning agent must learn from its mis-

takes directly. Unsupervised learning is the process of interacting with an environment and

observing the consequences.

Reinforcement learning deals more specifically with goal-seeking agents, and without

supervision, learn how to optimize their behaviors to reach their goal. Different actions

performed in different circumstances will often lead to different results (a queen piece

moving forward one square in a chess game may or may not be a good move; it depends

entirely on the current state of the game). Common terminology in this field refers to these

‘circumstances’ as the state of an agent. The state is an agent is the sum total of all its

knowledge about itself that has any relation to it achieving its goal. I.e. for a robot in the

field with a goal location to travel to, its state representation may need to include its current

position, what obstacles are in its immediate vicinity, predicted weather conditions etc. Its

ability to observe that it has been painted a grey color however may not be relevant to it

achieving this goal, in which case would not be included in the state representation.

52 CHAPTER 3. BACKGROUND: RECONFIGURATION PLANNING

In reinforcement learning, an agent must explore different actions available to it under

many different states to establish a rule-set or policy of how to behave in the future in

order to reach its goal as efficiently as possible. This policy is the mapping of each state

to an action it should execute when in that state. Sutton and Barto describe this as akin

to stimulus-response rules in biological systems [44, p.7]. A good policy is one that will

consistently pick an action that results in the agent being in a more desirable state than

where it was before, where a ‘desirable state’ is defined by being closer to its goal. A goal

is something that is inputted by a human or higher level program which tells the agent what

it is looking for or a value it should be working out how to optimize. What constitutes a

goal is widely varied. It can be a location in 3D space, a vehicle’s fuel consumption or

‘checkmate’ in chess.

In reinforcement learning a reward function must exist that calculates the desirability of

any state encountered, a single number which reflects a state’s desirability. In the example

of a field robot above, any state inside the physical goal location would be given a ‘good’

reward of say ‘+1’, any state not inside the goal location could be ‘0’, and for state from

which the robot would be completely stuck ‘−∞’ would be a reasonable choice. The agent

can use the reward function to compare different states and its policy can become: ‘pick

the action that will lead to the state of highest reward’. This will definitely help the agent

when it is one atomic action away from being in the goal location, or falling into a ditch,

because it will be presented with a choice of different desirability values of which it can

greedily choose. However the reward function cannot be used in every situation, because

when far from a goal or any hazards than all actions will lead to states of ‘0’ desirability

(because it will still be far from a goal or hazard). All actions being equal, it cannot make

an informed decision which action to take.

3.2. REINFORCEMENT LEARNING 53

Ultimately the agent should not be selecting actions that optimize its immediate reward,

but those which maximize its expected total accumulation of rewards over time, i.e. it

should be thinking long-term. For the field robot, this would mean getting to the goal

location as quickly as possible, as only when there can it start accumulating rewards. This

concept of ‘expected accumulation of reward over time’ is what is called a value function

[44, p.8]. Once the agent has explored the environment enough that it knows at least one

path from the current state to the goal location, a value function will be useful in guiding

the agent back to the goal location. The value of each state along this path to the goal

location will be greater than the previous one, as this state is one action-transition closer

to being able to start accumulating rewards. In this way an agent’s policy can simply be a

greedy choice of which action leads to the states with highest value.

To express the value function mathematically, first the return function, Rt, needs to be

expressed. The return is defined as the sum of rewards, ri, after time t up until time T

where time is segmented in discrete intervals called episodes;

Rt =
T∑
k=1

rt+k

To incorporate the idea that rewards are better if received sooner rather than later

(prompting an agent operate in reasonable time), a discount factor γ is included which

devalues the present valuation of a future rewards (depending now how many episodes in

the future it lies). The discounted reward is;

Rt =
T∑
k=1

γkrt+k

.

54 CHAPTER 3. BACKGROUND: RECONFIGURATION PLANNING

The value function of a particular state is the expectation of the discounted reward

function under a given policy;

V π(s) = Eπ[Rt|st = s]

Where E is the expectation function, π is the decision-making policy and st is the state

of the agent at time t. Some manipulation of the above formulae results in the Bellman

equations defining the value function V ;

V π(s) =
∑
a

π(s, a)
∑
s′

P a
ss′ [R

a
ss′ + γV π(s′)]

Where π(s, a) is the agent’s policy; the probability of taking action a when in state s,

P a
ss′ is the probability of arriving at state s′ given the agent is at state s and chooses action a,

and Ra
ss′ is the expected reward given the agent is at state s chooses action a and transitions

the state s′. The policy which achieves the most reward is referred to as the optimal policy.

The expected reward of the optimal policy from any state is greater or equal to that of any

other policy. This is the optimal value function;

V ∗(s) = max
a

∑
s′

P a
ss′ [R

a
ss′ + γV ∗(s′)]

3.2.2 Exploration vs. Exploitation

A major trade-off that exists in reinforcement learning is between exploration and exploita-

tion. Exploring an environment allows the agent to build up a model of its surroundings. A

model is a knowledge of possible states the agent can be in and something that simulates

the environment to predict, given a state and action, what new state the agent would likely

3.2. REINFORCEMENT LEARNING 55

end up in. This gives an agent the ability to plan paths to goals without having to physically

try them all again. More exploration gives the agent a larger model, and a more complete

picture of options available to it.

Say a field robot is collecting and depositing a resource between two locations and every

time it deposits a unit resource it receives a ‘+1’ reward. After an initial purely exploration

period, it finds one path through the environment linking both locations, and can now start

transferring resources and collecting its rewards. At this point the agent can either continue

to ‘exploit’ its current knowledge; collecting rewards along the fastest route it knows of, or

it can explore more terrain in the hope of finding a shorter path which will increase future

productivity. Conversely, the extra exploration could turn out to be a complete waste of

time. Arguably the best techniques discovered is to balance this tradeoff; concentrating

purely on a exploration based policy during an initial period, and slowly an exploitation

policy takes more precedence as time goes by. This is because the agent becomes more

and more likely to have found the optimal path between two states. Eventually exploitation

becomes the dominant concern of the agent, and time allocated to exploration tapers off to

a minimum threshold, perhaps 10% (by not reducing this value to 0%, the agent retains the

ability to readapt if the environment changes for whatever reason).

3.2.3 Dynamic Programming

Dynamic programming is one of the fundamental classes of reinforcement learning algo-

rithms which compute optimal policies given a perfect model2 of the environment (such as

a chess game where a player’s current state and environment is completely known). This is

2the model of the environment is a tool the agent uses which predicts how the environment will respond
to certain actions. A perfect model always predicts the environment’s responses exactly

56 CHAPTER 3. BACKGROUND: RECONFIGURATION PLANNING

in contrast to Monte Carlo Methods or Temporal-Difference Learning classes which begin

learning with incomplete or no such models of their environment.

Algorithm 3.1 Dynamic programming: Iterative policy evaluation, (edited) from Sutton
and Barto [44]

1: Initialize V (s) = −∞, for all sεS
2: repeat
3: ∆← 0
4: for each sεS do
5: v ← V (s)
6: V (s)← maxa

∑
s′ P

a
ss′ [R

a
ss′ + γV (s′)]

7: ∆← max(∆, |v − V (s)|)
8: end for
9: until ∆ < θ (a small positive number)

10: Output: π(s) = arg maxa
∑

s′ P
a
ss′ [R

a
ss′ + γV (s′)]

Optimum policy evaluation is main goal of dynamic programming. Optimum policies

are not probabilistic3, they make well defined decisions. The optimum policy function

function π(s) is the action a the agent performs when in state s to perform optimally.

Algorithm 3.1 shows the iterative method of computing a value function called policy eval-

uation. Policy evaluation begins initiating the set of all states (S) with a default value of

value −∞ except for goal states which retains fixed values of 0. Once all state values have

stabilized (condition on line 9), the optimum policy is outputted which is a greedy search

of the highest value state (line 10). At every iteration (repeat/until loop; lines 2 to 9) every

state value is updated according to the previous value of states in its neighborhood (line 6).

It selects the maximum value-reward number from neighboring states4.

3except in the cases of multiple equally good options, it may make a random choice of these
4This update is weighted by the probability of each possible state s′ the action a could lead to from state

s with the term
∑

s′ P
a
ss′ . Some cases are purely deterministic (such as chess), and which case this terms

would disappear (it equals one)

3.2. REINFORCEMENT LEARNING 57

(a) Policy evaluation (b) Policy improvement

Figure 3.7: Optimum policy evaluation & improvement; an example where grey cells indi-
cate goal regions (value 0) and an agent in any other cell can move horizontally or vertically
one cell per episode

58 CHAPTER 3. BACKGROUND: RECONFIGURATION PLANNING

An example of an evolving value function is shown in Fig. 3.7a and corresponding

policy improvement in Fig. 3.7b for successive iterations (denoted by k). In this example

an agent can be in any cell, but can only move horizontally or vertically one cell per episode.

The grey cells are goal regions. The policy evaluation produces a value function (Fig. 3.7a)

which the agent can use to navigate towards a goal by using a greedy policy of moving to

cells of increasing value. However each move incurs a reward of ‘-1’ (the Ra
ss′ term of

algorithm 3.1 line 6 is would be a constant in this example) to represent the cost of energy

and time expended doing so. Beginning at the fist iteration (k=0), all values are negative

infinity except for the goals. By the next iteration each state (cell) updates by the maximum

value of ‘reward + neighborV alue’ it finds. The cells directly adjacent to the goal cells

immediately become −1 + 0 = −1 whilst cells further away remain at negative infinity

because all their neighbors are still negative infinity. As the next iteration follows, the states

adjacent to ‘-1’ cells become ‘-2’ and so on. Finally the navigation function stabilized at

the third iteration and the corresponding optimum greedy policy in Fig. 3.7b is outputted.

By following this policy and agent anywhere on the grid will find its way to one of the goal

state in an optimum amount of transitions (multiple arrows indicate equally good choices).

3.2.4 MAXQ

A problem that arises in non-hierarchical dynamic programming is the propagations of

value functions as seen in Fig. 3.7a can be very computationally expensive for large state

spaces. The value functions of future rewards can take a long time to propagate outwards

to where an agent may be currently located. Hierarchical algorithms on the other hand have

the ability of abstracting knowledge from certain actions of certain states in the state space

3.2. REINFORCEMENT LEARNING 59

and applying that knowledge to other states without necessarily having to re-learn action-

implications at the new location. This is akin to function approximation technique where

the model of an environment may not be perfect, but it requires much less computation

than a perfect model. MAXQ [12] by Dietterich (1999) is arguably the state of the art of

hierarchical dynamic planners.

As an example, reusing the grid example of Fig. 3.7, an agent can be in any of these

16 locations however this time its orientation matters as well; it can either faces up, down,

left or right. There are thus 16 × 4 = 64 possible location-orientation states. An agent

can either choose to spin clockwise (changing its orientation) or move one cell forwards in

the direction it currently faces. A flat propagation technique could be used as the original

example did, and 64 states would have to be assessed individually. A hierarchical method

can exploits state abstractions by decomposing actions available to all states into separate

subroutines to share information between states via macros it develops. An example is that

seen in figure 3.8. This begins by using the movement decision from the previous example

(up down, left or right). Because it has to face a direction in this example before it can

move in that direction it calls on the ‘Orient Correctly’ subroutine which spins the agents

until in the desired orientation. Notice this subroutine can be applied to any location in the

grid, so when MAXQ learns this phenomenon from one state it can apply it to other states

and share knowledge across the state space. In this way the maximum number of states the

algorithm needs to encounter are 16 + 4 not 16× 4 in order to operate ‘intelligently’ in the

gird, and thus learning has been accelerated. A separation of actions also allows the agent

to ignore large amounts of the state space information and focus on what is relevant when

in any particular subroutine.

The downside of this technique is it cannot always guarantee global optimality (like

60 CHAPTER 3. BACKGROUND: RECONFIGURATION PLANNING

Figure 3.8: Subroutine hierarchy example of MAXQ

flat propagation can), even though it can guarantee that each subroutine execute with local

optimality. Each subroutine level has an associated value function which is uses to make

greedy optimal decisions from. In this example, the ‘Movement Decision’ subroutine has a

value function exactly that seen in the previous example, Fig. 3.9a. The ‘Orient Correctly’

subroutines value function is just the minimum of the (negative) number of clockwise 90

degree turn required until the agent faces in the desired direction. If the agent is located

and oriented as symbolized by the arrow in Fig. 3.9b, the ‘Movement Decision’ subroutine

will opt to move 2 cells upwards (locally optimal number of movements). However when

it executes this, to move upwards the first time the ‘Orient Correctly’ subroutine must spin

3 times clockwise before it points upwards (also locally optimum). So all in all there are 5

actions taken total. So it did find a solution to getting to a goal location, however it did not

find the globally optimum solution which is to move left 3 times without spinning (only

3 actions total). ‘Movement Decision’ did not decide to do this because the goal upwards

was only 2 cells away as opposed to 3.

3.3. COMPARISON OF EXISTING PLANNERS 61

(a) (b)

Figure 3.9: Example of MAXQ without global optimality

The benefits MAXQ offers is the accelerated learning of state space navigation. Such

benefits could potentially be applied to reconfiguration problems of modular robots due to

their large configurable space. If such an algorithm could be implemented in this field it

could potentially make a much faster reconfiguration planner that would additionally be

able to autonomously learn better reconfiguration strategies as time goes by. The only

downside is global optimality of reconfigurations are not guaranteed. However global opti-

mality is usually not a realistic design goal for any SRP and so a close-to-optimal solution

would still be a very welcome result.

3.3 Comparison of Existing Planners

This section highlights some major algorithmic decisions that exist for SRP designs. Table

3.1 compares five existing SRPs. This follows with discussions of implications and trade-

offs inherent to each principal classification of SRP design. All five SRPs listed are further

detailed as case studies after this section, completing this chapter.

62 CHAPTER 3. BACKGROUND: RECONFIGURATION PLANNING
Ta

bl
e

3.
1:

C
om

pa
ri

so
n

of
Se

le
ct

ed
R

ec
on

fig
ur

at
io

n
Pl

an
ne

rs

Pl
an

ne
r

Fr
ac

ta
M

T
R

A
N

C
la

yt
ro

ni
cs

M
M

M
G

ra
ph

Si
gn

at
ur

e

C
ite

[2
6]

[2
8]

[3
6]

[1
4]

[1
]

Ye
ar

19
94

20
02

20
06

20
08

20
08

M
od

ul
e

Ty
pe

Fr
ac

ta
M

T
R

A
N

C
la

yt
ro

ni
c

ge
n.

M
T

R
A

N
L

at
tic

e
he

xa
go

na
l(

2D
)

cu
bi

c
(3

D
)

he
xa

go
na

l(
2D

)
cu

bi
c

(3
D

)
cu

bi
c

(3
D

)
M

ax
.m

od
ul

es
he

lp
er

ai
ds

0
1

03
0

∞
Pr

oc
es

s
st

oc
ha

st
ic

de
te

rm
in

is
tic

st
oc

ha
st

ic
st

oc
ha

st
ic

st
oc

ha
st

ic
M

od
ul

e
C

om
po

si
tio

n
ho

m
og

en
eo

us
ho

m
og

en
eo

us
ho

m
og

en
eo

us
ho

m
og

en
eo

us
he

te
ro

ge
ne

ou
s4

C
om

pu
tin

g
A

rc
hi

te
ct

ur
e

de
ce

nt
ra

liz
ed

ce
nt

ra
liz

ed
de

ce
nt

ra
liz

ed
de

ce
nt

ra
liz

ed
ce

nt
ra

liz
ed

M
od

ul
e

M
ov

em
en

ts
pa

ra
lle

l
se

ri
al

pa
ra

lle
l

pa
ra

lle
l

se
ri

al
1

M
et

am
od

ul
es

?
m

od
ul

es
m

od
ul

es
5

m
et

am
od

ul
es

2
m

et
am

od
ul

es
m

od
ul

es
Si

m
ul

ta
ne

ou
sA

ct
ua

tio
ns

?
n/

a
si

m
ul

ta
ne

ou
s

n/
a

n/
a

no
ts

im
ul

ta
ne

ou
s

Ti
m

e
C

om
pl

ex
ity

/m
od

ul
e

lin
ea

r
su

b-
lin

ea
r

ex
po

ne
nt

ia
l

Sp
ac

e
C

om
pl

ex
ity

/m
od

ul
e

lin
ea

r
lin

ea
r

1 N
ot

ex
pl

ic
itl

y
m

en
tio

ne
d

in
th

ei
rp

ap
er

,b
ut

th
ey

st
at

ed
(p

.6
)t

he
ir

co
nfi

gu
ra

tio
n

sp
ac

e
gr

ew
by

ro
ug

hl
y

a
fa

ct
or

of
1
6
=

24
m

o
d
u
le
s

fr
om

ev
er

y
co

nfi
gu

ra
tio

n,
th

is
is

ch
ar

ac
te

ri
st

ic
of

a
se

ri
al

pl
an

ne
r

2 T
he

ho
le

s
ar

e
de

em
ed

m
et

am
od

ul
es

,a
s

th
ey

ar
e

a
‘s

tr
uc

tu
re

d
ar

ra
ng

em
en

to
f

(a
bs

en
t)

m
od

ul
es

’,
ju

st
as

or
di

na
ry

m
et

am
od

ul
es

ar
e

st
ru

ct
ur

ed
ar

ra
ng

em
en

ts
of

m
od

ul
es

3 a
20

05
C

la
yt

ro
ni

cs
pu

bl
ic

at
io

n
[1

9]
an

tic
ip

at
ed

it
co

ul
d

ca
rr

y
ne

ig
hb

or
s,

th
e

20
06

pu
bl

ic
at

io
n

[3
6]

an
d

su
bs

eq
ue

nt
pu

bl
ic

at
io

ns
di

d
no

tm
en

tio
n

it.
A

ss
um

ed
th

e
id

ea
w

as
ab

an
do

ne
d

4 D
is

cu
ss

ed
pl

an
ni

ng
w

ith
m

od
ul

e
of

bo
th

ge
nd

er
ed

co
nn

ec
tio

ns
,a

nd
no

n-
ge

nd
er

co
nn

ec
tio

ns
.

C
on

ne
ct

ab
le

in
te

rf
ac

es
ar

e
an

im
po

rt
an

ta
sp

ec
t

of
a

m
od

ul
e

th
e

pl
an

ne
rn

ee
ds

to
co

ns
id

er
,t

he
re

fo
re

th
is

is
co

ns
id

er
ed

he
te

ro
ge

ne
ou

s
co

m
po

si
tio

n
5 T

hi
s

pl
an

ne
ru

se
s

m
et

am
od

ul
es

fo
rr

ob
ot

st
at

ic
co

m
po

si
tio

n,
no

tf
or

lo
co

m
ot

io
n

ho
w

ev
er

3.3. COMPARISON OF EXISTING PLANNERS 63

3.3.1 Stochastic vs. Deterministic

A simple definition of a stochastic program is; ‘a program which makes a decision based

on a randomly generated value at least once in its execution’. A deterministic program

will always produce the same output if its inputted values remain unchanged. Modeling a

planning program’s performance on random variables is not as useless as it may first seem,

in fact Asadpour et al. report most approaches to SRPs use stochastic-based optimization

methods such as Simulated Annealing or Genetic Algorithms [1, p.864]. Stochastic pro-

grams can be effective in this context because the search space can be so large and the

heuristics functions can be so uninformative, that the search environment of an SRP bears

great resemblance to an environment based on probability distribution functions. Stochas-

tic programs excel in these probabilistic environments because they are willing to explore

(sec. 3.2.1) their environment by occasionally searching in directions that would otherwise

seem like bad decisions, due to the random element. However because the environment is

(seemingly) probabilistic, the what initially seemed like a ‘bad decision’ to the planner can

sometimes turn out to be a really good one, of which the planner takes note and updates its

probabilistic model of the world it is in. This is something a deterministic planner typically

never does, bent on making ‘good decisions’ continually.

The attraction of deterministic planners lies in their reliability; they can find a reconfig-

urable solution between two configurations, they guarantee they will always be able to do

so again if required. However to guarantee this, the SRP often needs to know everything

about a robot, all of the time, such that nothing unpredictable happens when it executes

(everything is foreseen). This requires much coding to consider everything logically, and

when installed on an SRR, usually requires the SRR to share large volumes of information

64 CHAPTER 3. BACKGROUND: RECONFIGURATION PLANNING

between modules, to constantly be aware of its global state. The disadvantage of determin-

istic planners, is they are characteristically more demanding of computation resources and

therefore often slower to execute. Thus higher complexity is the tradeoff cost for reliability

when designing a planner.

The advantage of stochastic planners is that they are often very simple and easy to im-

plement. Modules can be programmed to take actions based on just their own state and and

that of any immediate neighbors (Fracta Planner; sec. 3.4), or perhaps that of neighbor’s

neighbors as well maximum (Claytronics Planner; sec. 3.6). This kind of reconfiguration

is really a result of self-assemblies, each module acting independently, but in such a way

that the global cluster converges onto a shape goal unbeknownst to any module. Because a

stochastic algorithm is usually of a simpler implementation than a deterministic one, it most

likely lacks full knowledge of the entire robotic cluster, and therefore a module will often

not know the long-term consequences of taking a certain action. So the searchable state

space is no longer perceived as deterministic (which it is) by the stochastic planner, instead

each state-action pair5 are considered to have an associated probability density function as

to the desirability of their final outcome. So, the state space only ‘seems’ to be probabilistic

to a stochastic planner due to its own naivety, a module will not consider it present state

as much as a deterministic planner would have it do in order to predict the exact result of

its actions. The advantage of programming a stochastic planner, is that it is not necessary

to confront the entire complexity of the search space head on, stochastic methods have

some ability to ’learn’6 about which actions are usually better to take, and to some degree

the module’s can figure out their own way to the goal shape. So programming is simpler

as the programmer does not have to comprehensively consider many types of situations a
5meaning; performing a certain action from a certain state
6by building up a probabilistic model of its environment in order to make better decisions in the future

3.3. COMPARISON OF EXISTING PLANNERS 65

robot can be in. The disadvantage of this, is that is that stochastic planner’s can potentially

blindly lead their robot into configurable stalemates (Fracta; sec. 3.4, Claytronics; sec.

3.6) due to poor global planning. It is always possible to identify and avoid these undesir-

able situations with planner which makes more globally based decisions, i.e. robot-defined

decisions, of which deterministic planners are usually closer to than the other (localized)

extreme; purely module-based decision making.

3.3.2 Metamodules vs. Modules

Metamodules are a structured arrangement of multiple modules. They can be considered

a single module themselves that are a different type of module than the modules they are

composed of. An example of a 4-module MTRAN metamodule is shown in Fig. 3.13a.

There are several reasons why a planner may opt to collate modules at its disposal into a

smaller number of metamodules to then plan for. Two main reasons include:

1. Generalization: If a planner is designed to reconfigure modules of a common

shape, such as a cube, then it has the potential to be applied across many different

module designs, if those module designs can form metamodules of that common

shape. Such a planner that is almost7 hard-ware independent is advantageous in that

it is portable; it requires little or no re-design when executed on different robots of

varying module designs. Million Module March (sec. 3.7) is one of the planners

studied below that plans for generalized metamodules.

7it still depends on modules being able to form a metamodule of the common shape, and each such
metamodule needs to able to perform collective motion primitives the planner assumes of a metamodule,
such as sideways translations. Depending on the module design and metamodule arrangement, a metamodule
may not always be able to perform both these tasks, in which case it cannot be planned for by this SRP

66 CHAPTER 3. BACKGROUND: RECONFIGURATION PLANNING

2. Size reduction of the configuration space: Metamodules reduce the planner’s con-

figuration space in two ways. Firstly there are less individual elements to consider.

In the case of the 4-module metamodules above, the number of individual elements

is quartered. Secondly, metamodules will (most likely) have less configurations pos-

sible that a single module. The 4-module MTRAN metamodule for example does

not have any degrees of freedom to orient itself about. The only way its configurable

description can be changed is by relocating it, or reorienting it. In fact the MTRAN

planner (sec. 3.5) further restricts metamodule orientation, so the planner can always

safely assume that the metamodule is in its one standardized configuration, and only

needs to consider its position when planning for them. Comparatively a Superbot

module has 1728 unique configurations it can be in for a given position (sec. 4.3).

Both these factors contribute to a significant exponential reduction of the searchable

space for a planner, allowing more rapid execution

A great disadvantage of using metamodules over modules is the losing the ability to

explore and exploit every feature of a module’s design in computing an optimal or close-

to-optimal reconfiguration solution. Even though a ‘metamodule-planner’ can potentially

compute reconfigurations solutions faster than a ‘module-planner’, it will most likely be

much more inefficient a solution. Additionally the time saved by a metamodule-planner

finding its solution quickly may not contribute to time saved overall, as module movements

are comparatively slow, usually the order of seconds. So the more time invested by a

module-planner will probably translate to a faster physical robot reconfiguration and save

time overall. Another disadvantage of using metamodules is the loss of resolution of the

shapes a robot can assume. If a robot’s metamodule composes a high number of modules,

the robot can become very ‘pixilated’, reducing its ability to perform certain tasks.

3.3. COMPARISON OF EXISTING PLANNERS 67

3.3.3 Homogeneous vs. Heterogeneous

Homogeneous and heterogeneous module compositions have already been discussed in

sections 2.2.1 & 2.2.1. The five SRPs discussed in this chapter only plan for homoge-

neous composition except Graph Signature (sec. 3.8). Heterogeneous robots require extra

consideration for a planner, meaning added programming effort and enlarged searchable

space, because it must account for which different modules are located where. A homoge-

neous planner never needs to distinguish between modules, it knows (without verification)

they are all exactly the same. As an example of the effect heterogeneity has on the size

of an SRP’s searchable space; Fig. 4.11b shows how 32 bipartite modules can be packed

together. Taking into account only position and orientation of modules (not the max. con-

figuration options possible) there are 5.05 billion unique ways of forming this cube shape,

a small fraction of this robot’s overall configuration space. However, if the composition

changed to using bipartite modules of two types, 16 of module A and 16 of module B say,

this number would increase by 32C16 to become 3.03 × 1018, a 601 million fold increase8.

So heterogeneous planning does requires more computational complexity, but it can im-

prove SRR application, by carrying additional modules that contain specialized sensors, or

solar panels etc.

3.3.4 Centralized vs. Decentralized

Decentralized SRPs are arguably better in many respects than centralized SRPs, and more

desirable for modular robots. Centralized computation is the execution of a program on a

single microprocessor, decentralized computation is the execution of a program over mul-

tiple microprocessors. Decentralization always incurs several programming complexities

8The use of ‘C’ in ‘32C16’ represents the mathematical choose function

68 CHAPTER 3. BACKGROUND: RECONFIGURATION PLANNING

such as synchronizing programming threads, avoiding race conditions and avoiding dead-

lock situations where different threads wait on each other. Though ultimately, for SRP to

be effective, it must be decentralized as modular robots have many microchips (standard

module designs include at least one microchip in each module). Thus a decentralized SRP

take full advantage of a modular robot’s natural computing architecture, and allows for

scalable9 algorithms. If an algorithms time-complexity is linearly proportional with the

amount of modules or less (e.g. Claytronic sec. 3.6), Million module March sec. 3.7), then

such a program would never be limited by the number of modules in a robot, because for

every new module added, the added complexity that adds to the system is matched by the

addition computation power the robot receives.

3.3.5 Serial vs. Parallel

A parallel SRP is able to plan simultaneous motions of modules. Parallelized motions

of modules allow much faster robot reconfigurations and are required for robots of many

modules to reconfigure in a reasonable amount of time. Parallelized planning is therefore

preferred and necessarily for the reconfiguration of SRRs of many modules in reasonable

time. Serial planning is always easier to implement, as there is not as many programming

overheads such as dynamic collision detection between multiple moving modules. Instead

one module would only need to avoid collision with static modules of known locations,

a much simpler feat. Parallelized motions can add to the number of choices available to

a planner to consider about how a reconfiguration could be done, but if the planner is

locally-oriented (opposed to global knowledge-based decision making), as most stochas-

tic planners are10, then other module movements are often independent and irrelevant to a

9scalable; meaning an SRP can plan for SRRs of many modules
10e.g. Fracta sec. 3.4 & Claytronic sec. 3.6

3.3. COMPARISON OF EXISTING PLANNERS 69

module making a localized decision about how it should move, considering only other mod-

ule movements within its immediate vicinity11. In this case the added number of choices

would not necessarily translate to decreased performance due to increased complexity.

Parallelized module movements are required for a robot reconfiguration to scale well

with increased modules to the system. Serially reconfiguration of a robot executes in

quadratic polynomial time. In contrast parallelized reconfigurations have the potential to

execute in sub-linear time as exampled by Million Module March (sec. 3.7). Parallelized

programming is therefore more desirable in an SRP.

3.3.6 Simultaneous Actuation

Simultaneous actuation is a module’s ability to actuate several of its degrees of freedoms

simultaneously. This is physically possible with most module designs, however planners

usually limit these actuations to one at a time for simplicity of planning (MTRAN is an

exception, sec. 3.5). In most cases, Simultaneous actuation generally does not offer a

robot more advantage over consecutive actuations except in a small number of specialized

situations. It does increase planning complexity by adding more optional actions a planner

can perform on a single module, so for these reasons simultaneous actuation is usually not

considered for SRPs nor discussed much in the literature. This aspect of planning was

considered in this thesis planner (sec. 4.4.2).

3.3.7 Max. modules helper aids

Many planners include the ability of one module being able to ‘carry’ another, often re-

ferred to a helper module, but also a converter module (MTRAN sec. 3.5). For some
11an exception to this rule is routines for checking global connectivity is not violated by a certain motion

70 CHAPTER 3. BACKGROUND: RECONFIGURATION PLANNING

module designs this ability is necessity for the planner to find a possible reconfigurable so-

lution between two configurations of a robot (sec. 4.4.1). This holds true for the MTRAN

(sec. 2.3.4), ATRON (sec. 2.3.3) and Superbot (sec. 2.3.5) modules. The ‘Max. modules

helper aids’ refers to how many modules are able to be carried simultaneous by a helper

module. This will be defined both by planner design and module torque restrictions.

Helper modules does not necessarily constitute simultaneous actuation, nor parallelized

movements between the ‘helping’ module and the ‘helped’, they are all wholly indepen-

dent aspects of an SRP. The centralized implementation of this thesis does include helper

modules and simultaneous actuations, and does not support parallelized module motions

for example. A more detailed discussion of helpers and their implementation in this thesis

is located in sec. 4.4.1.

3.4 Case 1: Fracta Planner (1994)

To the author’s knowledge; the Fracta planner [26] represents the first autonomous SRP

to appear in the field of modular robots. Based on the Fracta module [26], this planner

offers a simple self-assembling reconfiguration algorithm that each module in a cluster

executes based entirely on local communications from connected modules. Many other

hardware designs incorporate local communication styles and implement package-relaying

for communications between modules not directly connected, but the Fracta planner acts

even more localized by assuming package-relaying is not possible, and communication

really is just limited to connected neighbors.

This planner considers the state of a module in terms of its connection type. The Fracta

planner is unique in this case, due to not having any degrees of freedom, and so besides

3.4. CASE 1: FRACTA PLANNER (1994) 71

(a) Connection types (b) Connector-type transition
Diagram

Figure 3.10: Fracta connection-type diagrams, from Murata et al. [26]

position and orientation12, connections are the only way of describing a module’s state. A

Fracta module can connect up to 6 neighbors and has 12 unique ways of being connected

(excluding those created by rotation or mirror image) as seen in Fig. 3.10a, connection

represented by internal lines. They are depicted as hexagons, as can connect in 6 differ-

ent places and pack into two-dimensional hexagonal patterns as seen in a simulation goal

configuration (bottom shape) in Fig. 3.12.

3.4.1 Representation of a Fracta

Fig. 3.10b shows a ’connection-types’ network or transition diagram. Each node represents

one of the twelve connection-types a Fracta can be in, and the links represent atomic actions

a module can take. Fracta’s have a novel way of initiating atomic movements discussed in

sec. 2.3.2 using their connectors to repel them to or from other Fracta without the use of

any degrees of freedom to reconfigure. The ‘distance’ between two connection types is

12Binary for Fracta; Up or Down

72 CHAPTER 3. BACKGROUND: RECONFIGURATION PLANNING

Figure 3.11: Example Fracta cluster, from Murata et al. [26]

the shortest path (least number of links) between them. Each Fracta can always check its

connection type by polling all 6 connectors enquiring which is connected. It can also ask

what connection-type each connected neighbor is.

3.4.2 Representation of the Fracta cluster

To describe the state of the modular cluster (which no one module can find out itself),

the program lists all possible combinations of module connection types together with their

connected neighbors’ connection types. For example as seen in Fig. 3.11 shows a 10-

Fracta cluster. All corner Fractas are of type ‘o’ by a quick reference to Fig. 3.10a, and

they are all connected to two ‘K’ type Fractas. All ‘K’ Fractas are connected to one corner

(o), two other side Fracas (K) and one central Fracta (s). All together there only 3 of these

combinations in this example (I shall refer to these as ‘connection states’:

o{K, K}

K{o, K, K, s}

s{K, K, K, K, K, K}

Where the LHS term is that of a Fracta’s connector type, and the subset is the list of

3.4. CASE 1: FRACTA PLANNER (1994) 73

connected neighbors’ connection types. This is how the configuration in 3.11 is represented

by the planner.

3.4.3 Algorithm

Each Fracta module is programmed with the desired configuration of Fracta cluster, en-

coded as above, but will never know the current configuration of the cluster. So each Fracta

must work with local knowledge only, to converge into this cluster configuration. One

configuration example is shown in Fig. 3.12, a 10-module line shaped cluster attempts to

change into a triangle. No Fracta’s beginning in that line shape will know which position it

will assume in the desired triangle configuration in advance, this is decided in due course.

A metric called fitness is introduced, acting as a heuristic each module can calculate for

itself independently. This informs a module how far away it is from any one of triangle’s

10 ‘connection-states’. It is mathematically defined by:

fitness(i) = minMj=1[d(typef (j), type(i)) +
∑6

k=1 d(ntypef (j, k), ntype(i, k))]

where

M : number of final types

d(a, b): distance between type ‘a’ and ‘b’

typef (j): j-th final type

type(i): type of i-th Fracta

ntype(i, k): k-th term in the list of neighbor types of the ith Fracta

ntypef (j, k): k-th term in the list of neighbor types of jth final type

74 CHAPTER 3. BACKGROUND: RECONFIGURATION PLANNING

Figure 3.12: Simulated steps of a reconfiguration, from Murata et al. [26]

3.4. CASE 1: FRACTA PLANNER (1994) 75

The ‘minimum’ function is in reference to whichever is the most similar of those 10

final connection-states to the Fracta’s own current connection-states. The first term is a dif-

ference measurement between the module’s current connection type and the most-similar

final connection type, and the second term is to include the difference between the mod-

ule’s neighbor’s current connection types and the most-similar final neighbor’s connection

types. One module can compute this as it knows its current connection-states (only), and it

knows every final connection-state. The lower the fitness function of a module the closer

it is to a final connection-state. If the fitness is zero then a Fracta is in one of the final

connection-states, if all Fracta’s have fitness zero then the cluster has successfully recon-

figured.

Strategy

Using this fitness function, the designers of Fracta found a deterministic strategy of

module movement based on a fitness-priority was difficult. Instead they opted for a less

complex stochastic strategy: ‘A Fracta is allowed to move if fitness is above locally con-

nected average, direction of movement is random’. So a module must first compare its

fitness function with that of its neighbors. Under this policy, if a module’s random move

decreases its fitness level, next time it compares to its neighbors fitness levels, it may be

under the average and will stay where it is. I.e. moves that improve (decrease) a module’s

fitness stay put, whereas moves that detriment (increase) a module’s fitness will continue

to move, possibly just to reverse a ‘bad’ move it just preformed. In this way, individual

modules are able to self assume, converging the entire cluster to the desired triangular

configuration.

76 CHAPTER 3. BACKGROUND: RECONFIGURATION PLANNING

3.4.4 Experimental Results

The Fracta group tested this planning algorithm by running 1000 simulations of the con-

figuration shown in Fig. 3.12. The results revealed 97.2% of trials reconfigured success-

fully before 2000 atomic movements occurred13. The remaining 2.8% either took longer

to reconfigure or fell into reconfigurable stalemate; where no single Fracta module could

perform a move14.

The group’s intuition reported that due to the stochastic nature of the process, conver-

gence was slower for more modules, such as a 15-module line reconfiguring into a 15-

module triangle. In this case 68.6% of trials reconfigured successfully before 4000 atomic

movements.

3.4.5 Discussion

Based on these the results of both a 10-module and 15-module reconfigurations, the time

complexity of such an algorithm seems to be quadratic-polynomial or greater. The way

in which modules communicate strictly locally and the global cluster can converge to a

desired configuration is impressive, and shows that such a simple self-assembling planner

is possible.

However the way in which this planner represents cluster configurations by listing pos-

sible combinations of connection states (sec. 3.4.2) could cause problems for some desired

13listed as time steps in Fig. 3.12
14Some connection types of Fracta are unable to move, such as ‘m’ in Fig. 3.10a. A hexagonal ring of

Fracta modules composes 6 ‘m’ connection-type Fractas, which is one instance of a reconfigurable-stalemate

3.5. CASE 2: MTRAN PLANNER (2002) 77

configurations, because this method of encoding a configuration does not guarantee one-

one mapping of code-to-configuration. The same code could represent multiple configura-

tions. To the author’s knowledge, the encoding of the triangle shape used in example Fig.

3.12, listed in sec. 3.4.2, is in fact unique by virtue of the triangle’s symmetry, but more

complex asymmetric shapes could not be expected to reconfigure successfully.

3.5 Case 2: MTRAN Planner (2002)

The designers of the MTRAN module developed two methods of reconfigurations specific

to the MTRAN design [28]. The first method was a graphic user interface (GUI) which fa-

cilitated manual coding of a reconfiguration, allowing a person to enter in desired positions

and configurations of modules at every reconfiguration step. The program gives helpful

warnings such as if a module would be disconnected with such a move, or if a collision was

imminent, the stability of the robot structure in a gravitation field, and also allows macros

to be recorded, short sequences of movements that can be copied by other surface mov-

ing modules traveling to the same location [25]. The second method was an autonomous

hierarchical planner, published in A Self-Reconfigurable Modular Robot - Reconfiguration

Planning and Experiments [53], which this section examines. This autonomous planning

algorithm imposed several configuration limitations in order to simplify the planning pro-

cess, but nevertheless produced some impressive results with experiments preformed on

real module hardware. No name was given to this algorithm, so it shall be referred to as the

MTRAN planner.

A large configuration space is a major problem in reconfiguration planning, contributed

by the many combinations of positions, orientations and rotations about degrees of freedom

78 CHAPTER 3. BACKGROUND: RECONFIGURATION PLANNING

(a) A block of four modules (b) A cluster of 3 module blocks
and 2 converter modules

Figure 3.13: Compositional structures of modules of the MTRAN planner, from Yoshida
et al. [53]

a module a can have. One way to combat this is to reduce the dimensionality of modules,

such as the two dimensional module Fracta [26], or to develop an isotropic module, in

which case there is no need to consider the configuration of a module, as all configura-

tions are functionally identical. So an isotropic module is defined by position alone. An

MTRAN module alone is geometrically non-isotropic, it has 54 possible configurations in

3D space15, however the MTRAN planner restricts its planner to configurations composed

of isotropic metamodules, 4-module blocks as seen in Fig. 3.13a composing of 2 different

module orientations for each level. There are several advantages to this:

• Configuration space is reduced by factor 54, as MTRAN configurations are not con-

sidered

• By considering meta-module units and not individual module units, the number of

units to consider is quartered, which is an exponential reduction of configuration

15Proof: MTRAN modules are a rectangular prism shape of which the length can point in 3 possible
Cartesian directions. For any given direction, the module can be spun 90 degrees about its lengthwise vector
resulting in 2 possible axle directions. Additionally both module parts are actuated and can be turned to 3
discrete angles (-90, 0 and 90 degrees). Thus 3×2×2(3) = 54

3.5. CASE 2: MTRAN PLANNER (2002) 79

space

• Connector locations are ‘standardized’ over a modular cluster, and hence ‘predictable’,

removing the need for a search algorithm to search for paths between connectors

when motion-macros (Fig. 2.9) can be executed specific to this standardized surface.

• Connectivity between adjacent module blocks is guaranteed in any direction

3.5.1 Algorithm

The MTRAN planner solves reconfigurations by a hierarchical process of 2 parts; a global

‘flow planner’ and a local ‘motion scheme selector’ shown in Fig. 3.15. The global flow

planner directs motions of module blocks for global robot movement. It selects the rear-

most module blocks of robot and directs them the head of a robot with a set of optional

paths module can take, for robot locomotion, resembling a ‘flowing’ action (Fig. 3.16).

During this transition period, the 4 members of a module block separate and travel to the

robot head serially. Once all there they re-form into their block, such that global planning

of isotropic units can continue.

The local motion scheme selector takes the set of path options given to it by the global

planner and assesses which is kinematically possible by decomposing into a set of local

module motions allowed by the rule database (Fig. 3.15b). A valid path is one which

the modular robot is always fully connected, and module collision is avoided. It searches

through the set of given paths in order of shortest to longest path distance, executing the

first valid path. The reason some impossible paths are passed in by the global planner is it

is unaware of module design specifics and hence the module’s native kinematics.

80 CHAPTER 3. BACKGROUND: RECONFIGURATION PLANNING

(a) Initial State (b) (c)

(d) (e) (f)

(g) (h) Final State

Figure 3.14: Block (metamodule) Relocation of an MTRAN robot, from Yoshida et al.
[53]

3.5. CASE 2: MTRAN PLANNER (2002) 81

(a) Global ‘flow’ planner

(b) Concept Map

Figure 3.15: MTRAN Global/Local Reconfiguration Planner, from Yoshida et al. [53]

Though arbitrary reconfigurations are not possible for MTRAN robots entirely com-

posed of these meta-module blocks owing to the problem of module flavor as seen in sec.

2.3.3, as one MTRAN module alone unable to reorient. So the MTRAN planner incorpo-

rates converter modules (Fig. 3.13b) mixed in with the metamodules which offer coopera-

tive module movements (Fig. 2.9c) required for modules to change axle directions. These

converters are required particularly at bends in the robot topology, where surface moving

modules need to reorient (Fig. 3.16).

3.5.2 Discussion

The MTRAN planner’s use of hierarchical search successfully shows how centralized de-

terministic planning can navigate a vast state space. Instead of considering the possible

82 CHAPTER 3. BACKGROUND: RECONFIGURATION PLANNING

(a) (b)

Figure 3.16: Direction change of a surface moving module from (a) to (b) via converter
cooperation, from Yoshida et al. [53]

movements of any module at any time (which would be incredibly inefficient for a central-

ized planner) the algorithm focuses on the relocation of one module at a time because of

the division of global and local searches. This division is a classic example of divide and

conquer, limiting task complexity into manageable sequences of relocation tasks.

Whilst the choice of restricting configurations to metamodule structures does reduce

the state space size significantly, the robot is limited to more forming more ‘pixelated’

or ‘blocky’ shapes. It does not have the capacity to form finer geometrical features that

involve single module widths which could possible restrict its usefulness as a robot.

3.6 Case 3: Claytronics Planner (2006)

The Claytronics planner [36] and module have been a continual development from Carnegie

Melon University since 2004, publishing many papers [11] refining a planning technique

inherent to their Claytronics module (Fig. 3.17). Their paper titled Scalable Shape Sculpt-

ing via Hole Motion: Motion Planning in Lattice-Constrained Module Robots [36] in 2006

was their first publication specified key details about how their program was implemented,

which this section focuses on. Since then the research group has fully decentralized their

3.6. CASE 3: CLAYTRONICS PLANNER (2006) 83

Figure 3.17: Claytronic module prototypes (2005), from Goldstein et al. [19]

implementation and developed two “modular-robot-specific declarative programming lan-

guages, Meld and LDP” they argue is much better suited to modular robotic computer

architectures and provide a an abstraction to effectively execute a single program over a

group of modules considering module-module communication can have significant time

delays [2, 37].

Claytronic modules (Fig. 3.17) are cylindrical and will pack into two-dimensional

hexagonal lattice patterns. Like Fracta, they have no degrees of freedom, and use magnets

for locomotion. The reconfiguration planner uses the motion of holes rather than specific

module movements, inspired from semiconductor physics [19, p.101], in order to reconfig-

ure. A hole is a cavity within the modular cluster as shown in Fig. 3.18, whereby 7 modules

are ‘missing’ forming a hexagonal hole16. The 12 modules that line a hole are referred to

as the shepherd modules. In order for a hole to move, the three shepherd modules closest

to the white arrow in Fig. 3.18 relocate themselves to the opposite side of the hole. This

moves the holes center one module diameter in the direction of the arrow.

To reconfigure, a planner can either create or destroy holes along the surface or the clus-

ter, thereby expanding or contracting the cluster surface at a particular edge. For example,

the creation of a hole can be seen in Fig. 3.19, whereby surface modules form a shepherd
16holes are always 7-module hexagonal shapes

84 CHAPTER 3. BACKGROUND: RECONFIGURATION PLANNING

Figure 3.18: Hole basics: a) hole, b) shepherd modules (dark), c) direction of motion, from
De˜Rosa et al. [36]

(a) An edge selected to expand, (b) creates one or more holes, (c) launching them into the en-
semble

Figure 3.19: Expanding edge by creation of a hole, from Goldstein et al. [19]

group of 12 and thus create a new hole in Fig. 3.19b. From here, the hole can move away

into the structure, leaving the previously flat surface locally elevated. The opposite can

happen too, whereby a hole is destroyed in order to contract a surface, as seen in Fig. 3.20.

As a hole approaches the surface of a cluster, it can simply continue until its ‘emptiness’

is consumed by the exterior, leaving a local gouge in a surface. By creating or destroying

many such holes along surfaces, a robot either can expand or contract regions of its body

in order to reconfigure.

3.6. CASE 3: CLAYTRONICS PLANNER (2006) 85

(a) A hole approaches a contract-
ing edge,

(b) but rather than reflecting, (c) the edge consumes the hole

Figure 3.20: Contracting edge by deleting a hole, from Goldstein et al. [19]

3.6.1 Algorithm

The Claytronic planner is a decentralized one, modules to act upon local knowledge only,

and thus the program is very scalable. To implement this, global communications between

modules is not allowed, and so hole motions are not coordinated in any way, they travel ran-

domly within the structure bouncing of exterior surfaces if not needs much like molecules

of an ideal gas. Through randomization of direction, the global density of the structure will

always remain roughly balanced, so the robot will (most likely) not loose balance unpre-

dictably.

The definition of ‘local’ above is determined by the size of tri-regions seen in Fig.

3.21. These regions are the resolution of new shapes the robot can morph into, and mod-

ules within will communicate to each other and share local computational tasks like, hole

creation/deletion. Each Tri-regions mark themselves either for deletion, filling, or to re-

main unchanged depending upon whether they exists in the goal configuration or not. So

as one tri-region along the robot surface fills up its region with modules by creating holes,

the holes’ which move randomly will eventually arrive to a tri-region attempting to delete

itself, which will use those holes to do so by destroying them at its surface.

In this way reconfigurations are possible, yet there is still the potential for configuration

86 CHAPTER 3. BACKGROUND: RECONFIGURATION PLANNING

Figure 3.21: Tri-regions: left and centers tris are set for growth, the rightmost for deletion,
from De˜Rosa et al. [36]

Figure 3.22: Starvation example in absence of smoothing effects. Regions a and b prevent
region c from forming a hole to delete itself, from De˜Rosa et al. [36]

3.6. CASE 3: CLAYTRONICS PLANNER (2006) 87

stalemates. Fig. 3.22 shows an example of a local stalemate whereby previous hollowing

regions ‘a’ and ‘b’ continuously resulted in a region of modules ‘c’ which is not too slim

to form holes, and thus cannot remove itself. So a method for enforcing uniform hole

destruction along a collapsing surface is required. The planner does this by prioritizing

the most extreme protrusions of a surface for deletion over already hollowed regions. It

also borrows concepts form of simulated annealing, whereby hole destruction at a surface

is probabilistically dependent on distance between the current surface location and that of

the ‘corresponding’ surface of the goal configuration. As holes travel, their lifetime is also

bound by a logarithmic time decay value which increases their chance of destruction at a

surface the longer they live. The probability of hole destruction is called the Temperature

test:

p = 1.0 + log
dnear

max(dmax − cdecay × t, 1)

where

dnear: distance (in diameters) between r and the closest point on the target geometrys

perimeter

dmax: maximum distance between the perimeters of the source and target geometries

cdecay: time decay constant (typically 15 to 50)

t: time elapsed (unit of time steps; defined by the time for a hole to move one module

spacing)

The temperature test takes care of these more macroscopic sources of local configura-

tion stalemate, however another consideration on a more microscopic level the planner must

88 CHAPTER 3. BACKGROUND: RECONFIGURATION PLANNING

consider is surface roughness. For hole to be created or destroyed, they require fairly flat

surfaces to do so. One hole being created or destroyed will increase surface local rough-

ness (as seen in Figs. 3.19 & 3.20) which can restrict further hole creation/destruction

until smoothed. Tri regions smooth task responsibility for their own surface smoothing

by choosing a direction away from the robots exterior (arrows in Fig. 3.21) to implement

‘gravity driven collapse’. Much like sand does naturally, gravity driven collapse coordi-

nates modules of higher elevation to move ‘down’ to fill local depreciations.

3.6.2 Experimental Results

Reconfiguration experiments were carried out between the fours shapes shown in Fig. 3.23.

These shapes were chosen to test the planner’s ability to create and remove both shape

corners and curvatures. These included morphing:

1. The square shape into the ‘T’,

2. The ‘T’ shape back into the square, and

3. The rectangle into the circle

Module numbers were varied, such that the square would be trailed with side sizes 100,

200, 300 and 400 module lengths, so there were 12 experiments all up, each repeated 10

times, with random hole placement and motion directions each time, running for 10,000

time steps. The number of tri regions was fixed over all 12 experiments.

Several measured of performance were recorded for each time step of the reconfigura-

tion, perhaps the most meaningful was the shape compliance fraction which is the percent-

age of modules already in the goal shape. Fig. 3.24 shows the reconfiguration progression

3.6. CASE 3: CLAYTRONICS PLANNER (2006) 89

(a) (b) (c) (d)

Figure 3.23: Experiments performed on reconfigurations between these shapes, from
De˜Rosa et al. [36]

of all 12 experiments over the time in terms of this measure. Besides showing that big-

ger shapes do indeed take more time to reconfigure, that the square to ‘T’ experiment was

slower than the other 2 experiments, and caused global disconnections to occur. The de-

signers of Claytronic attributed this to:

1. Initial motion completeness for this experiment began less than the rectangle to circle

experiment

2. Increasing module numbers for a fixed set of tri regions causing increased in coarse-

ness and modules to control which led to a “decrease in the control of local curvature”

which was a more pronounced effect from the square to many-cornered ‘T’ many-

module experiment

3.6.3 Discussion

It is unclear whether any of the above experiments eventually converged to the goal shape,

perhaps only not due to tri region resolution. Enforcing global connectivity would need

to be addressed next, as separating into two distinct modular clusters does not guarantee a

90 CHAPTER 3. BACKGROUND: RECONFIGURATION PLANNING

Figure 3.24: Shape compliance of Claytronic experiments over time, from De˜Rosa et al.
[36]

3.7. CASE 4: MILLION MODULE MARCH (2008) 91

robot can ever reconnect. It suggests from the square to ‘T’ shape experiment that highly

convex shapes are potentially unsolvable, or incur significant delay to converge to the given

shape. One also wonders if holes can become bottlenecked at slim places between two re-

gions, and additionally if their passing at bottle necks with considerable effect the structural

integrity there.

However Claytronics planner’s innovative use of holes to change shape is extremely

impressive and presents a Claytronic robot with some interesting robot abilities most other

planners can’t provide. For one, hollows within a structure can be easily formed is so

desired. Individual modules inside the structure are never ‘stuck’ either, they can always

use holes to travel themselves, much from freely than seen in the ATRON example (sec.

2.3.3). Some planners, like Million Module March (sec.3.7) if planning to construct a shape

with a cavity can accidentally leave a module in there, which when called later to move is

unable to do so. In this case a hole could be used to absorb the module out. Perhaps this

is the only use of internal module movement in a homogeneous Claytronic robot, but if a

heterogeneous robot has a special sensor say module buried deep within the structure, it

will be easily retrievable when its use is required on the surface. Exact routines to control

these advantages have (assumedly) not been written into the Claytronic planner yet, but its

method of reconfiguration would allow for their realization.

3.7 Case 4: Million Module March (2008)

Million Module March [14] in essence is a hierarchical search with two major levels sim-

ilar to the MTRAN planner. The high-level search routine is concerned with selecting &

instructing certain surface cubes that are allowed to detach from the rest of the structure

92 CHAPTER 3. BACKGROUND: RECONFIGURATION PLANNING

(a) Initial configuration (b) One time step later

Figure 3.25: A Million Module March robot, initiating a reposition, from Fitch and Butler
[14]

to become mobile and move towards a particular location. This instruction is called as a

subroutine, which is the lower level part of the program’s search hierarchy. This lower level

search is required is to work out the details of what path a cube can move over the structure

to its given goal location.

This algorithm was developed with the intention of locomotion of a modular robot

around obstacles to a chosen goal region, and without the overhead of reconfiguring into

exact shapes, it can execute and entire repositioning of the robot in sub-linear time with

the amount of module it composes. This makes the program extremely scalable, and has

thus been able to simulated repositions of robots up to 2.2 million modules large. It used

constant memory per module, and localized communications between modules to take ad-

vantage of highly parallel movements without global synchronization as shown in Fig.

3.25.

3.7. CASE 4: MILLION MODULE MARCH (2008) 93

(a) Sliding transitions (b) Convex transitions

Figure 3.26: Sliding-cube movements possible, from Fitch and Butler [14]

3.7.1 Cubic Metamodules

The sliding cube modules used in this planner represent general metamodules, made from

any particular type of module. Not all module types can form into cubic meta-modules,

however there are still elements of this planner that can be taken advantage of, discussed

next. Fig. 3.26 shows how sliding cubes atomic movements possible, either a sliding

translate to an adjacent cubic cell, or turning a corner to connect to another face of a cluster-

module.

3.7.2 Algorithm

Maintaining Connectivity

This program first begins with a connectivity check of the surface elements, identifying

the cubes which can be safely detached from the structure without the structure becoming

globally disconnected (sec. 3.1.3). Such modules will not detach themselves, but can safely

become mobile, moving over the structure to a new location. To check their reposition

does not violate global connectivity, they check that all their initially connected neighbors

94 CHAPTER 3. BACKGROUND: RECONFIGURATION PLANNING

(a) A dense cluster; connecting cycle
links neighbors cubes via other cubes

(b) A chain of cubes; a connecting cycle
does not exist

Figure 3.27: Connecting cycles, from Fitch and Butler [14]

are connected to each other independently from them, via a connection cycle. For exam-

ple, Fig. 3.27a shows a grayed cube initiating a connection cycle check on its neighbors,

marked with black dots. A connection cycle exists along the black lines connecting those

3 neighbors, so if the grey cube relocates then these cubes are still all connected to each

other. In this way global connectivity is guaranteed before the grey cube moves. Fig. 3.27b

shows a connectivity search initiated in a chain of modules, the iterative-deepening search

progress outwards either side and does not find a connection cycle. In this case the grey

module cannot move, as it would separate the two leftmost modules from the two rightmost

modules. If a connection cycle exists, a module will lock it those immediate neighbors and

the position it intends to move to for the time it takes to move to prevent collisions with

other modules.

Navigation Function

With a known set of these modules which are allowed to detach and become mobile via

connectivity checks, Million Module March uses aspects of reinforcement learning, partic-

ularly dynamic programming (appendix.3.2.3) to propagate a navigation function out from

a goal region, to assign every surface connector on the robot a value of desirability for any

surface moving modules to consider. The mobile modules are then programmed to each

3.7. CASE 4: MILLION MODULE MARCH (2008) 95

greedily select ever more desirable connectors to swap to until they are inside a goal region,

indicated by a wireframe box in Fig. 3.25b. The net result is a mass of cubic modules, with

a surface that is ever-flowing towards the goal region which inches the entire robot into the

wireframe.

This propagation begins with any modules that have connectable faces that correspond

to cell positions within the goal region17, they will be given desirability values of ‘0’. At

this point, surrounding cubes will repeatedly enquire as to what their value of desirability

is, and copy that value for themselves with the addition of a cost value of ‘-1’ to represent

the time & energy a surface moving module would have to expend in transitioning both

connecting faces. This process will continue outwards from the goal, with the value of

successive connectable faced decreasing by ‘-1’ of their closer neighbors. Sometimes a

face may have multiple neighbors with different values, in this case a connecting faces

will choose the highest value. Say a connecting face has two neighbors of values ’-3’

and’-7’; it will gives itself a value of ‘-4’ (by choosing the neighboring value of ‘-3’ and

adding a cost of ‘-1’ to account for a module’s transition). This process only relies on local

communication between modules, which allows the algorithm to scale well.

When propagated over the entire robot, connecting faces can ‘point’ the way to more

desirable connectors (highest value) for surface moving modules to follow, defining opti-

mum paths towards the goal region exampled in Fig. 3.28. As many modules are in motion

at any one time, some can block the path of others and so the navigation function needs to

be continually updated (by continual propagation) so a surface moving module can re-plan

its motion path if need be.

17goal regions are always placed next to initial robot regions, so it is guaranteed that some modules will
have connectable faces which correspond to lattice-cell positions within the goal region. If a robot is to
locomote further away, a series of goal regions can be used

96 CHAPTER 3. BACKGROUND: RECONFIGURATION PLANNING

Figure 3.28: Navigation function pointing the direction of an optimal path for surface mov-
ing module to travel into the goal region, from Fitch and Butler [14]

3.7.3 Discussion

Million Module March provides an effective means of coordinating many surface moving

modules, replanning transition paths if conflicts occur, to reposition a modular robot. This

navigation function labeled 3D cell positions with values of desirability (the cells that corre-

spond to available connectable faces). Such a searchable space is very small in comparison

to other configuration planners, and brings the searchable space back into the realm of what

is possible for regular search routines to plan module motions. Even though many module

designs cannot form a cubic meta module in which to take full advantage of this planners

benefits, the concept of this navigation function based on dynamic planning can still cross

over to other robots. The searchable space would not necessarily by positions in 3D space

anymore, more likely some form of state space depending on the module, but nonetheless

can prove effective for a planner. Million Module March’s sub-linear execution time shows

that locomotion of large modular robots is possible and provides a good benchmark for

future reconfiguration planner to aim for in the time-complexity of their reconfigurations.

3.8. CASE 5: GRAPH SIGNATURE (2008) 97

3.8 Case 5: Graph Signature (2008)

Graph signature [1] is a stochastic optimization method that uses aspects of graph theory

to discover optimal reconfiguration paths. By considering a modular robot as a graphical

representation of part positions with directional edges for connecter genders, graph edit-

distance can be used as a heuristic function to guide a search.

Graph edit-distance is a similarity metric in graph theory. It gives a numerical score

of similarity between two graphs, based on the Maximum Common Sub-graph (MCS)

and the shortest sequence of edit operations18. By representing a robot’s initial and final

configurations as configuration-graphs, this function directs the reconfiguration planner by

assigning greater probabilistic weighting to actions that result in greater similarity with the

final configuration.

Possible search paths are depicted in Fig. 3.29, which are a sequence of configurations

shown by their similarity metric (vertical axis) as they converge on the final configuration.

As shown, an optimal reconfiguration path may be beset with local optimums which would

trap any greedy routines. Although the stochastic nature of the search here supplies the

planner with an exploratory element which to ultimately get around this, it may require

multiple searches until this solution is found.

In order to recognize a search thread stuck in a loop, or a new thread attempting to

re-do old work, each thread keeps a log of configuration graphs previously encountered

using a graph signature, a isomorphism-invariant code (hash code) of graphs. A thread is

forbidden to re-visit previous configurations if presented the opportunity, and a new thread

can be spared computations previously done.
18i.e. deletion & insertion of edges or vertices, that transform an initial graph to a final graph

98 CHAPTER 3. BACKGROUND: RECONFIGURATION PLANNING

Figure 3.29: Searches using a similarity metric, from Asadpour et al. [1]

3.8. CASE 5: GRAPH SIGNATURE (2008) 99

New search threads are run until the programs finds a “suitable solution”, of which is

not further described [1]. The advantage of this program is its capacity to discover optimal

reconfigurations, however this can take many searches to do so, and is not guaranteed to do

so within any set time frame for real-time computing applications. Also there is no way of

knowing when an optimal reconfiguration solution has been found, only that it is the ‘best’

solution found so far, so searching is not necessarily terminated at this point.

Some simulated experimental results were conducted with this algorithm using the

MTRAN design. A configuration from a line to a ring configuration (Fig. 3.30) was

chosen to test the relationship between a program’s execution time and the amount of

modules present. One program action to another configuration is defined by one connec-

tion/detachment event, which could involve many module actuation events. The test of

a line into a ring therefore constitutes one action which is the smallest iteration step this

program’s search thread will take. Searching disconnection options is a quick exercise by

considering existing connections, but searching new connection possibilities from the re-

sult of multiple module actuation combinations is an inverse kinematic problem and grows

exponentially with degrees of freedom added. Fig. 3.31 shows this exponential relationship

as the modules increase from 5-819.

Another similar experiment was conducted on the reconfiguration of a 4 modules from

a quadruped into a line (Fig. 3.32). Conducting 500 separate search trials, each using 20

search threads, some statistical performance data was complied. The optimal reconfigura-

tion sequence for this is 9 attach/detach actions. As seen in Fig. 3.33, never in the 500

experiments did the first search thread fins the optimal solution. This is indicative of a

19The scaling disparity between the 4-module point and the 5-8 module point in Fig. 3.31 is reported to
mark the switch of their computer to using virtual memory, as main memory filled up)

100 CHAPTER 3. BACKGROUND: RECONFIGURATION PLANNING

(a) Initial line configuration (b) Final ring configuration

Figure 3.30: Reconfiguration Experiment Two, from Asadpour et al. [1]

Figure 3.31: Computation time of a reconfiguration from a line to a ring, from Asadpour et
al. [1]

3.8. CASE 5: GRAPH SIGNATURE (2008) 101

(a) Initial quadruped configura-
tion

(b) Final line configuration

Figure 3.32: Reconfiguration Experiment One, from Asadpour et al. [1]

Figure 3.33: Computation time of a reconfiguration from a line to a ring, from Asadpour et
al. [1]

local optimum misleading the heuristic driven search as seen in Fig. 3.29. However when

considering the results of all 20 threads in Fig. 3.34 is appear a small percentage of the 500

experiments did find the optimal solution, but the far majority of ‘best solution found’ over

20 threads lie in the 20-30 attach/detach actions column.

In other statics, not shown figuratively here, 53% of the experiments found at least

one reconfiguration solution after searching 50k configuration graphs, 83% found a solu-

tion after 100k graphs were searched. Understandably, more configuration graphs required

searching on average before a ‘best solution’ was found out of the 20 search threads.

102 CHAPTER 3. BACKGROUND: RECONFIGURATION PLANNING

Figure 3.34: Computation time of a reconfiguration from a line to a ring, from Asadpour et
al. [1]

3.9 Conclusions

As seen, SRP development can be a difficult task, there are many considerations and in

all cases, SRPs cannot guarantee to solve reconfigurations optimally an also execute in

real-time. This is due to the inherent challenge of a vast configuration space a planner

must search through efficiently. The key to a useful planner is scalability; ideally a planner

should be able to execute reconfigurations for an SRR of an arbitrary number of modules

and not be restricted by an upper threshold of them. For this to happen, both time com-

plexity and space complexity of an SRP execution need to relate linearly at most with the

amount of modules present. Additionally an SRP must always be responsible for main-

taining global connectivity and preventing collisions of modules, and to perform efficiently

must have an intimate understanding of the module hardware it is planning for.

To combat the problem of vast configuration spaces before actual planning begins, of-

ten compromises can be made. One example is the use of metamodules which both the

MTRAN and Claytronics planners use. Metamodules increase the isotropy of collections

3.9. CONCLUSIONS 103

of modules (or lack thereof in the Claytronic’s case) and thus reduce the amount of possi-

ble states these modules can be in for a given planner to consider. This reduces the search

space size exponentially, though the downside is the set of possible robot configurations it

can morph is limited to more ‘pixelated’ shapes, conceivably limiting the general utility of

the SRR.

Good heuristic functions are not easy to develop. The designers of MTRAN found that

using lattice spacing for anisotropic 3D modules almost gave no indication of the distance

between two robot-configuration points in the SRR’s configuration space. Different heuris-

tics are often tailored to specific module designs and some cannot always warn of a con-

figurable stalemate as seen in the Fracta experiments. Heuristics functions, or equivalent

directing methods, are required for SRPs to be able to successfully search the vast con-

figuration space in reasonable time. Yet often SRP designers do not consider this enough

and commonly opt for hierarchical methods to make sense of the large space, or resort to

strictly decentralized planning where module-module communication is restricted between

modules only a few module lengths apart. In this way the configuration space does not have

to be explicitly searched in a fully comprehended sense by the SRR. Instead self assem-

bling behavior policies adopted by individual modules result in interacting behavior that

(hopefully) converges SRR structures to goal configurations, completely unbeknownst to

any one module (Fracta, Claytronics).

Self assembling and strictly decentralized module behavior is characteristic of stochas-

tic planners, though not a definite indication that a planner is stochastic. The downside of

these strictly decentralized planners is they are often unable to foresee either local min-

ima (if the planning approach is gradient based [52]) or configurable stalemates that loom

ahead. SRPs that aren’t strictly decentralized, such as MMM, have the ability to apply

104 CHAPTER 3. BACKGROUND: RECONFIGURATION PLANNING

to execute pseudo-global based routines like a connectivity-checker, that will search out

through however many (though bounded by a maximum search depth) modules to see if a

connection cycle exists. In this way, the planner can still reap the benefits of being decen-

tralized (sec. 3.3.4) yet can also foresee certain disastrous events like global disconnections

that the Claytronic planner for example cannot always foresee.

Of all the SRPs discussed the MMM by Fitch and Butler (2008) is the most scalable,

and is also the most scalable algorithm that exists in the field of SRR. Its efficient use of a

navigation function allows the highly parallelized motions of surface moving modules. As

discussed, MMM is also able to foresee global disconnection events. For these reasons it

was decided to utilize the navigation function and connectivity checker of the metamodule-

based MMM, and re-implement them into native kinematic space in the design of this

thesis.

Chapter 4

Centralized Planning for 3R-Type

Modules

This material covered thus far is intended to give the reader the necessary background

information about self-reconfiguration planning. This chapter presents a centralized imple-

mentation of a new SRP which solves arbitrary SRR reconfigurations of a homogeneous

composition of the 3R module types1 such as Superbot (sec. 2.3.5). This is a centralized

serial reconfiguration planner written in Java is dubbed the ‘Centralized Self Reconfigura-

tion Planner’ (CSRP) and is followed by a decentralized implementation (DSRP) presented

in the next chapter.

This chapter commences with the problem definition and general approach taken. This

progresses to a description of geometrical properties of the 3R modules and a discussion

on state representation; how the CSRP represents any state a 3R module could potentially

be in. Some of the specialized motion primitives are then discussed and follows with an

13R is shorthand for 3-Rotation, a module with 3 degrees of freedom

105

106 CHAPTER 4. CENTRALIZED PLANNING FOR 3R-TYPE MODULES

outline of the CSRP algorithm; all the routines it composes and how they are organized.

An evaluation of the CSRP is given, including an analysis and several reconfiguration ex-

amples the CSRP is capable of. Finally a discussion concludes this chapter outlining the

performance of this planner in the context of the literature and highlighting what has been

achieved.

4.1 Problem Definition & General Approach

The task of self-reconfiguration is defined as follows: Given some modules that are in-

terconnected in some way, find a partially2 ordered sequence of actions that changes the

modules from their current configuration into a desired one. A valid reconfiguration in-

cludes the avoidance of any module collisions and does not violate global connectivity

(sec. 3.1.3).

The CSRP approach is is to move modules in serial (one at a time) to change a robot’s

configuration. An example is seen in figure 4.1a which shows a Superbot-based SRR of

6 modules in an initial shape. A graphical user interface (GUI) is used to input a desired

shape the robot should transform into (Fig. 4.1b). This GUI is purely for testing purposes

of the CSRP, because in a fully autonomous SRR a higher level program(s) will use this

SRP to change shape instead of a human operator. The CSRP then begins searching out the

best reconfigurable solution which Fig. 4.1c shows a snapshot of mid-execution in simula-

tion. In this snapshot only the rightmost module is currently moving, traveling downwards.

Finally the robot converges on the desired shape of Fig. 4.1d.

2some modules can move in parallel

4.1. PROBLEM DEFINITION & GENERAL APPROACH 107

(a) Initial configuration (b) A desired shape is
inputted with a GUI

(c) SRR in mid-
reconfiguration

(d) Final configuration

Figure 4.1: A line of six 3R modules reconfiguring into a stick figure

108 CHAPTER 4. CENTRALIZED PLANNING FOR 3R-TYPE MODULES

The CSRP uses a hierarchical search as did MTRAN and Million Module March (sec.

3.5 & 3.7). The advantage of this method is that it embraces a ‘divide and conquer’ advan-

tage that makes it feasible for a deterministic planner to navigate a large state space. The

two levels of search are the global and local searches. The global routinely selects modules

for mobilization; to relocate from their current positions to goal locations. The local search

determines optimal motion paths between those locations according to the module’s native

kinematics (sec. 3.1.1). The local search does this by building a state network for each mo-

bilized module; a network of possible states a module can possibly assume whilst all other

modules remain static. These states are linked by valid3 actions the module can perform

respective to each state. The interplay of states and actions in this design is very much sim-

ilar to that discussed throughout the reinforcement learning section 3.2. All actions change

a module’s state, and the state before and after an action are linked by such an action. A

visual representation of such a network is shown in Fig. 4.2 where each circle represent a

state-node a module can assume, and each link represents a valid action performable from

that state which will lead to another state-node. For the local search to relocate a mod-

ule, it must find a (preferably short) path that exists in this network that goes from state-A

to state-B. If the SRR then executes those module-actions defined by the solution path, it

will reconfigure correctly into the desired shape. The CSRP creates a state network for

each module relocation (iteration of global search), however the DSRP takes advantage of

re-using such a network for multiple modules to utilize, presented in chapter 5.

The advantage of this planner is it operates in native kinematic space. It is therefore able

to take full advantage of the module’s hardware, by defining possible module movements as

3valid means taking such an action is not outside the physical capabilities of the module (when Superbot
part has rotated to the maximum position of its 180 degrees range it cannot turn forwards anymore) and also
such an action would not cause a collision

4.1. PROBLEM DEFINITION & GENERAL APPROACH 109

Figure 4.2: State-Network Visualization

to exactly what is allowed and what is not supported by the hardware without making any

assumptions. Therefore module relocations are guaranteed to find optimal transition paths,

and so Local Search is both a complete4 and correct5. Additionally this planner does not use

metamodules. Even though metamodules can help reduce the state space size, the CSRP

can still find solutions independent of this advantage and thus does not compromise robot

versatility and application by restricting operation to a subset of possible configurations.

The CSRP is also deterministic; for each reconfiguration is executes, it guarantees it can

always re-execute the same reconfiguration in the future if the need arises. Furthermore it

is able to re-execute any reconfiguration in the exact amount of time it took to reconfigure

in the first place. Stochastic SRPs such as Fracta, Claytronics and Graph Signature (sec.

3.4, 3.6 & 3.8) cannot guarantee this (except in a probabilistic6 sense).

Full generalization of the CSRP has not been holistically attempted yet in the face of

more fundamental challenges such as implementing cooperative motion control between

4definition: if there is a solution it will find one
5definition: a solution which it finds is guaranteed to be a correct solution
6an example of a probabilistic guarantee is ‘being able to successfully reconfigure from shape-A To shape-

B 90% of the time’, or ‘can reconfigure between two shapes within 20 seconds, 65% of the time etc.’

110 CHAPTER 4. CENTRALIZED PLANNING FOR 3R-TYPE MODULES

interdependent modules (helpers; sec. 4.4.1). Challenges of parallelization and decen-

tralization have been successfully implemented in the DSRP, discussed in the following

chapter. Thus generalization is the sole challenge left as per the ultimate goal of this the-

sis ‘To create a decentralized program that can autonomously plan arbitrary & parallel

reconfigurations of homogeneous modular robots of arbitrary module designs in native

kinematic space’, and is left for future consideration (sec. 6.3.3). As the CSRP is not fully

generalized, the 3R module was chosen to instantiate its implementation due to the mod-

ule’s versatility. The 3R module has a high number of both degrees-of-freedom (3) and

connectable faces (6). Additionally it does not suffer from the flavor phenomenon (sec.

2.3.3) like ATRON and MTRAN do.

4.1.1 Terminology

Before this chapter progresses into CSRP specifics, the different classes of modules need

to be defined. The CSRP brands each module in its SRR as one of the following classes

(with associated roles):

• Static Module: A module that does not move. It makes up part of the robot’s

structure

• Mobile Module: Also Surface Moving Modules, A mobilized module traveling

over the surface of static modules which form the bulk of a modular cluster

• Helper Module: A module that has one static part and one free to aid mobile

modules move by picking them up at one location and placing it down in another,

without detaching itself from the module cluster

Additionally the term Structural Module refers to a module is either a static module or

a helper module. It is the ‘opposite’ of a mobile module. During a reconfiguration some

4.2. STATE SPACE REDUCTION 111

modules will change class. If a structural module is selected to become a mobile module,

it is said to have been mobilized and is thus able to move along the robot’s surface of

structural modules.

4.2 State Space Reduction

There are two exploitations of hybrid modules the CSRP utilizes. One is a hybrid’s ability

to act as a purely lattice-architecture module (sec. 2.2.1), and another is an examination

of module symmetries to discover module isomorphisms. Both these exploitations help re-

duce the size of the searchable space the planner must navigate to discover reconfiguration

solutions which ultimately decreases CSRP execution time.

4.2.1 Lattice Structure

Conforming a hybrid module to act purely within the its lattice framework over chain-based

operations reduces planning complexity because:

1. For lattice architectures, configuration space is finite. Although Superbot is a hybrid

module capable of lattice and chain type movements, this planner restricts module

positions to discrete positions defined by the lattice grid, to make planning more

manageable. This is a cubic lattice, of which each Superbot part occupies one cubic

cell

2. Some planners like Million Module March (MMM) define the position of surface-

moving modules according to which connecting faces they are connected to at any

one time. However there can be instances of such modules having their connected

112 CHAPTER 4. CENTRALIZED PLANNING FOR 3R-TYPE MODULES

parts located in concavities (sec. 5.1.1); concave regions of the robot’s structural sur-

face where a single part of a surface moving module has the option of connecting to

two or more connectors of structural modules. MMM, as a generalized-metamodule

planner, treats the case of being connected to one connector or another as two sep-

arate states so as to not make any undue assumptions about module hardware. For

Superbot however, it makes no difference during a reconfiguration which connector

the connected part is connected to, only that it is the ‘connect part’. In either case the

mobile module is functionally identical, and is therefore considered to be in the same

state, which is another way this planner uses symmetry to reduce the size of search-

able state spaces7. An exception here is when a mobile module is in the presence

of helper modules that moves also (sec. 4.4.1). If a mobile module is adjacent to a

helper module which is about to move, there will be a different outcome if the mobile

module was connected to it (it will be taken for a ride) or the static robot surface (it

will remain where it is)

3. An additional benefit of the definition of a state’s position raised in the previous point

is there are also less connection-actions required for a planner to consider. Besides

the inclusion of helper modules (discussed later) there is only one connection-type

action the CSRP considers. This is simply to swap the connected part of a module

such that the ‘unconnected part’ latched onto any structural modules around it, and

the ‘connected part’ disconnects all its connection. If a state’s position was defined

by connectors instead of position, then the planner must know which connector the

7In fact this ‘connected part’ exploitation can be utilized by most module designs including ATRON,
Fracta, MTRAN and Claytronics (sec. 2.3.3 - 2.3.4, 3.6). It does not however apply to Roombots (sec. 2.3.6)
due to each part’s degree of freedom that allows the connectors of a common part to rotate relative to each
other (when that degree of freedom is actuated, the module’s motion will be dependent on which connector
was connected to the robotic structure)

4.2. STATE SPACE REDUCTION 113

previously unconnected part should latch onto instead of simply latching onto every

connector it happens to be adjacent to. For a planner to decide this, the amount

of connection-actions needs to increase, one for each connector of the unconnected

part. This would increase the dimensionality of the state space. The size of the

states space would also increase by argument of the previous point. So due to the

location-definition of a module’s position over the connector-definition, the CSRP’s

state space is smaller and less dimensional than otherwise

4.2.2 Module Isomorphisms

A Superbot module is non-isotropic, and so an SRP must take into account possible con-

figurations this module can be in (bound by the lattice framework), as each is likely to be

functionally different. This contributes to the problem of a large configuration space as dis-

cussed in sec. 3.5. However the configuration space can potentially be reduced by identify-

ing geometric symmetries in a module. Certain symmetries are also isomorphisms; which

cause every module-configuration to have a functionally isomorphic ‘twin’ (assuming the

module cluster is homogeneous). Not every symmetry is a isomorphism, a combinations of

symmetries is sometimes required for other isomorphisms discussed below. Since an SRP

is concerned with module functionality only, it can collate each set of isomorphic config-

urations into a single state to consider as per the state representation of the module (sec.

4.3). Every isomorphism found will halve the state-space size compared to the original

configuration-space. The Superbot module has three symmetries seen in Fig. 4.3;

1. Horizontal slice between both parts

2. Vertical slice of front face

3. Vertical slice of the side face

114 CHAPTER 4. CENTRALIZED PLANNING FOR 3R-TYPE MODULES

Figure 4.3: A module 3-R module with three degrees of freedom, from Fitch and Butler
[14]

This first symmetry exposes the equivalence of the module parts, if the module was

to be turned upside down, the respective part locations would obviously change but the

module’s state remains unchanged as the module’s geometric and kinematic features are

identical. This is one isomorphism. Another isomorphism can be found in each part using

both vertical symmetries. If the module’s central axle connecting both parts is actuated by

180 degrees, the revolved part will also be unchanged functionally. This applied for both

parts, so the 3 isomorphisms founds in Superbot are:

1. Module parts are identical (the module can be turned upside down)

2. Top part can be spun 180 degrees

3. Bottom part can be spun 180 degrees

For every isomorphism identified, the state space size can be halved. So Superbot’s

three isomorphisms translate to an eight fold reduction of the searchable space of a ho-

mogeneous robot, greatly enhancing the CSRP’s performance. Notice that the module’s

isomorphisms are distinct from its symmetries; the combined symmetries 2 & 3 were both

4.3. STATE REPRESENTATION 115

required for isomorphisms 2 & 3 to exist; if the third symmetry is removed then neither

isomorphism 2 or 3 can exist8.

A final point is that even though an SRP can compute reconfiguration strategies using

the state-space alone (without regard to the configuration space), when it comes to exe-

cuting the physical reconfiguration the SRP must be able to determine the configurations

of each module. Because even though a module part can spin 180 degrees and be in the

same state, the polarity of actuators reverse, and by executing an action knowing only the

module’s state (not configuration), the actuator may turn the part in the opposite direction.

Though this is easily fixed; the CSRP keeps a log of every module’s present configuration,

and the DSRP relies on every module keeping track of its own configuration. In this way

action commands concerning a particular module states can always be translated into the

action command concerning the module’s exact configuration.

4.3 State Representation

As discussed in sec. 3.1.1, the state representation is the information needed to fully define

a module’s state; the functional (geometric and kinematic) features of its configuration.

By exploiting configuration isomorphisms (sec. 4.2.2) the number of states a module can

assume for a given position will be less than the number of configurations. To do this,

the state representation should only include the minimum amount of information needed

to identify a configuration’s functional features. For example if the upper part in Fig. 4.3

is spun 180 degrees, the module is still in the same state but in a different configuration

8Proof: Using Fig. 4.3, if both parts’ front faces developed equal bulges, then symmetries 1 and 2 would
still hold, but not 3. In this case of rotating either part by 180 degrees about the central axis, the bulge would
faces rearwards and the module would be geometrically altered. So isomorphisms 2 & 3 both fail

116 CHAPTER 4. CENTRALIZED PLANNING FOR 3R-TYPE MODULES

(the upper part is 180 degrees rotated relative to the bottom, not 0 degrees anymore). The

information need to describe this change in configuration could be the facing direction of

the front face, if it started off facing the ‘positive X’ direction, it will now be facing the

‘negative X’ direction. However to describe just the state, one only needs to record that ‘it

faces in the X direction’ (the the positive/negative sign is superfluous information).

The Superbot module has been the module chosen for the CSRP’s implementation. It

has 2 parts, 1 infinitely revolvable central axle common to both parts, and 2 axles inherent

to each part which can rotate within a 180 degrees range as shown in Fig. 4.3. The planner

defines the position of this module as the position of whichever part is connected to struc-

tural modules (surface moving module only ever need one part connected, as the other will

be moving). The position of the connected part is defined by a universal Cartesian coor-

dinate system, the origin of which is arbitrarily placed at one of the module-part locations

at the commencement of simulation. A Superbot state is fully and uniquely defined by the

following values:

• Position (P): universal Cartesian coordinate of connected part - infinite possibilities

• Orientation Direction (OD): which direction is the unconnected part relative to the

connected part X, Y or Z? - 3 possibilities

• Orientation Sign (OS): is the unconnected part more positive or negatively placed

along the OD from the connected part - 2 possibilities

• Connected Part’s Axle Alignment (CPAA): axle direction, can be X, Y, or Z

direction as long as not the OD - 2 possibilities

• Unconnected Part’s Axle Alignment (UPAA): same as above - 2 possibilities

• Connected Part’s Axle Rotation (CPAR): -90, 0 or 90 degrees - 3 possibilities

• Unconnected Part’s Axle Rotation (UPAR): same as above - 3 possibilities

4.3. STATE REPRESENTATION 117

Using this coordinate system in a cubic lattice setting, a Superbot has 216 distinct states

possible9, and 1728 distinct configurations10. The reason why the CPAA or UPAA cannot

be parallel to the module orientation direction (OD) is due to the Superbot hardware. Both

part-axles are fixed perpendicular to the central axle, and the axle is always in the OD

direction. Additionally, a substate is defined by elements of a state that concern just one of

the parts. For example the unconnected part’s substate would be made up of all the above

except the CPAA and CPAR terms.

In the construction of an SRR’s state network, the CSRP will first populate the network

with legal states that a mobile module can exist in around the SRR’s surface of structural

modules. To do this the CSRP polls each connector of every surface structural module

and computes the subset of possible states that can exists there given the presence of other

modules close by. If the plane defined by the flat surface of the connector’s face contains

no other modules on the side opposite from the connector’s part’s location (this is true in

either end module of Fig. 4.4a for example), then there are 108 possible states contributed.

I.e there are 108 functionally unique ways a mobile module can attach itself to that con-

nector11.

9Proof: As seen in the Superbot state definition below, for a given module position, the combination of
other state-defining possibilities is: 3× 2× 2× 2× 3× 3 = 216

10Proof: a factor of eight greater than 216 states as found in sec. 4.2.2
11Proof: The module’s OD can either be parallel or perpendicular to the normal vector ~n of the plane

defined by the connector’s flat surface. Case 1 (OD||~n); CPAA can be in one of two directions whilst attached
(not three; it cannot be in direction ~n). Case 2i (OD⊥~n,CPAA⊥~n); one connected-part substate exists here;
the CPAR value that causes the connected part’s face to face the connector (either -90deg or 90deg). Case 2ii
(OD⊥~n,CPAA||~n); three connected-part substates exists here for all three values of CPAR. Also there are
4 combinations of OD and OS in the ‘Case 2’ type, i.e. a module can be perpendicular to ~n in 4 ways, and
parallel 1 way. In all cases, the unconnected-part can be permutated through its independent terms; UPAA (2
possibilities) and UPAR (3 possibilities) totaling 6 independent possibilities. Thus (1[2]+4[1+3])×6 = 108

118 CHAPTER 4. CENTRALIZED PLANNING FOR 3R-TYPE MODULES

4.4 Motion Primitives

This section discussed some of the specialized motion primitive possible by a 3R module

the CSRP is able to optionally utilize. A discussion of all fundamental motion primitives is

in section 4.5.6.

4.4.1 Helper Modules

A helper module is one of the CSRP classifications of modules which helps mobile-modules

by picking them up in one location on putting them down in another. The CSRP can be set

to either include or exclude the helper-class.

Case 1: No Helpers

Planning with no helper modules is to plan for all mobilized modules to travel indepen-

dently towards a goal region. This is a much simpler way to plan as no explicit coordination

is required between modules. The downside of this method is the existence of many robot

configurations that are impossible to reconfigure. For example, this straight line example of

four Superbot modules seen in Fig. 4.4 is one impossible configuration. Here, the SRR is

unable to fill the area marked with a wireframe with any of its modules. Due to global con-

nectivity constraints; only the modules at either end of this line configuration are allowed

to detach and become mobile in order to fill the wireframe. If either module in the middle

tried this, the structure would be separated into two separate parts as shown in Fig. 4.4b

and global connectivity is violated. However neither end module has to capacity to reach

around to a new connector from where they are currently located, as seen in figures 4.5a

- 4.5d, and thus are both stuck where they are. Hence the option of no designated helper

modules can severely limit a robot’s ability to reconfigure. The advantage of this case, if a

4.4. MOTION PRIMITIVES 119

(a) (b)

Figure 4.4: (a) A modular robot is in need of a helper module to fill wireframe box. (b) it
cannot use a middle module as this would violate global connectivity

reconfigurations is still possible, is reconfigurations are much less computationally expen-

sive to solve.

Case 2: Helpers Included

Reconfigurations from initial shapes such as Fig. 4.4a are possible with the inclusion of

helper modules. This allows the end module to be able to ask the middle module it is

connected to for help, by moving as well. In this case the middle module is acting as a

helper module, and the end module is a mobile module. The helper module does not fully

disconnect, one part has the ability to move and change connections (the end part (pink),

which connects to the mobile module) but the other will remain static and fixed to the rest of

the robotic structure (the base part (blue), always attached to the rest of the SRR structure).

Fig. 4.5 shows a 15-atomic action process on how a light colored mobile module is able

to travel to the wireframe with help. Figs. 4.5a - 4.5d show actions that do not yet require

the helper’s aid. This is the extent of the mobile module’s reach, and so now requires the

120 CHAPTER 4. CENTRALIZED PLANNING FOR 3R-TYPE MODULES

helper to move. Figs. 4.5e - 4.5g show how the extra reach provided by the helper module

is able to align one of the mobile module’s connecting faces with one of the helper’s own

connecting faces on its base-part, the part which remains static. Between Figs. 4.5g - 4.5h

the mobile module first connects to the helper’s base part, and then disconnects from its

initial connection with the helper’s end part, letting it return to its default configuration.

From Fig. 4.5h onwards, the mobile module can move by itself, it does not require any

more helpers. Travelling toward the wireframe in Figs. 4.5h - 4.5o requires an ‘up and

over’ type motion seen (similar to MTRAN’s forward-roll motion; sec. 2.3.4). What Figs.

4.5j and 4.5n do not show is additional ‘connection swaps’, in which the front part (the part

closest to the wireframe) has just moved into place and it connects to the structure, and

then the rearward part can safely disconnect allowing it to swing ‘up and over’, bringing

the module closer to its goal.

The example shown in Fig. 4.5 is the result of autonomous planning by CSRP. This

required searching this module’s state space, i.e. all possible states this mobile module can

assume given that every other module is structural. If there are no helper modules, this

space is relatively small, there are only 1512 states possible12. If two helper modules are

considered by the planner however (either end module in Fig. 4.5o), the state space grows

to 19380, a 12.8 fold increase in size. This is the disadvantage of including helpers in the

search space, they augment the search task considerably. However they were necessary in

this task to successfully fill the wireframe box with a module.

12Proof: As mentioned in sec. 4.3 there are 108 states for every connectable face assuming no other mod-
ules exist on the other side of the plane made by the connecting face. This holds true for every unconnected
connector face in the 3-module line shape (the 4th module, the mobile module does not count, as this is the
module of whom this state space is being constructed). All modules have 6 connectors but both end structural
modules have one connector hidden from the mobile module as a static connection with the central structural
module, so they only have 5 available connectors for the mobile module. The central structural module has
only 4 connectors available for the same reason. Thus 108× (5 + 4 + 5) = 1512

4.4. MOTION PRIMITIVES 121

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

Figure 4.5: Helper module assisting a mobile module to relocate to the wireframe box

122 CHAPTER 4. CENTRALIZED PLANNING FOR 3R-TYPE MODULES

The reason the state space increases so dramatically is because the planner has to co-

ordinate the actions taken by the mobile module and the helper module. As seen in Figs.

4.5c - 4.5d and then Figs. 4.5d - 4.5e, the mobile module was moving and then the helper

module moved, and later the module moved again in Figs. 4.5h - 4.5i, which displays some

of this coordinated behavior. In effect the planner is treating this as a ‘super module’, one

that is made of two Superbot modules and thus has twice the degrees of freedom and twice

the connectable faces. Doubling the degrees of freedom leads to an exponential increase in

the number of unique configurations this ‘super module’ can assume, defined by an exten-

sion of the state representation of a single module (sec. 4.3). This is exponential because

for every unique configuration one module is in, the whole set of unique configuration of

the other module needs to be considered due to their interdependence of coordination. As

discussed in sec. 4.3, there are 108 states a module can assume for every connecting face,

thus for a mobile module connected to a helper’s connecting face, and then the helper mod-

ule connected to a static module’s connecting face there are of order ∼ 108× 108 = 11664

unique configurations for a helper and mobile module to be in13.

Implementation: Super States A ‘super module’ requires a representation for the plan-

ner to make sense of it, called a superstate. This requires both the Global Search and Local

Search routines (sec. 4.5.3 & 4.5.5) to search a superstate space instead of the regular state

space. A superstate always specifies what state a mobile module is in and sometimes spec-

ifies what state a helper module is in. If it does not specify what state a helper module is

in, then the helper is considered to be in its default state; the state it was in initially when

13the exact answer is up to a maximum of 9510 unique configurations, depending how many non-mobile
modules are around blocking configurations it could otherwise assume. Even with obstructing modules ab-
sent, 9510 is less than 11664 because a helper’s base part is not allowed to move, so its side base part’s
connection faces are not contributing to possible configurations it could reach

4.4. MOTION PRIMITIVES 123

the Global Search selected the mobile-module to mobilize. If it can be helped, a mobile

module’s superstate should not specify a helper’s state, to limit the amount of super states

a helper adds to the overall searchable space14. For instance, a mobile module far from

a helper does not need to take into account the helper module’s state as their actions are

independent (their mutual distance prohibits any immediate collision events or chances of

meaningful coordination). Thus the planner need not consider an extra ∼ 108 × 108 su-

perstates for every connector ‘far’ away a mobile module can potentially connect to. The

definition of ‘far’ here is defined by beyond the helper’s proximity; the region around the

helper where the actions of either module are mutually dependent, i.e. where they can pos-

sibly collide without correct coordinate of movements. A helper must consider all mobile

module states that are in this region or one atomic motion away from being in this region.

Fig. 4.6 shows this region of cells comprising a helper’s proximity. By modeling mobile

module & helper module representation like this, each helper only contributes 9510 super

states max. to the state space.

A superstate is really a means in which a mobile module can control the helper module.

A module is said to engage with a helper when it wants it to move, it can choose to do

this when moving into the helper’s proximity. This incurs a high computational cost of up

to 9510 super states to consider, but is often necessary. Before a module engages with a

helper it has 7 fixed actions it can take, in addition for 1 possible engagement action for

every helper’s proximity a mobile module is in (sec. 4.5.6). When connected to a helper, the

module receives an additional 7 actions to control the helper and has one disengagement

action to give up control of the helper it is engaged to. It was originally thought that a

mobile module only requires control of a helper module when physically connected to its

14henceforth ‘superstate space’ will be referred to as ‘state space’ for brevity

124 CHAPTER 4. CENTRALIZED PLANNING FOR 3R-TYPE MODULES

(a) A helper module’s possible part locations: the
red cell marks helper’s static base part, green
cells mark the 3 possible location of a helper’s
end part can reach

(b) Helper’s proximity: the additional blue cells
mark the rest of a helper’s proximity which in-
cludes all cells adjacent to possible end-part lo-
cations (green cells)

Figure 4.6: Helper module’s proximity

movable end-part, as the example in Fig. 4.5 showed, this would be fine, as the mobile

module it connected to the helper right up until it is dropped off onto another connector

(Fig. 4.5g) from whence it can continue traveling without further aid. However if the task

is reversed, and the module in the wireframe box of Fig. 4.5o attempted to relocate back to

its original position in Fig. 4.5a it would be unable to do so. By progressing back through

these figures 4.5o - 4.5a, it becomes apparent that the mobile module needs to be able to

command the helper module to first reconfigure before it can connect to its end part Fig.

4.5g before it physically connects to the end part. So the proximity notion was used which

allows the task in Fig. 4.5 to be executed forwards or backwards without a problem. A

final note; as the superstate is really just a state with more information, the word ‘state’ is

often used in place of ‘superstate’ in the rest of this report for brevity.

4.4. MOTION PRIMITIVES 125

4.4.2 Simultaneous Actuation

Degrees of freedom help define atomic movements a module it can take, such as the bi-

partite MTRAN (sec. 2.3.4) which can actuate any two of its axles by 90 degrees in either

direction providing it with max. four choices of atomic motions in any one state. How-

ever simultaneous actuation can provide a module with more reconfigurable options than

corresponding succession of actuations allow. For example, figure 4.7 shows module AB

attempting to move away from module CD. From an initial configuration in Fig. 4.7a, if

part A were to turn in either way (clockwise/anticlockwise) whilst part B remained inac-

tive, part B would collide with part C. Similarly if part B attempted to turn either way

whilst part A was inactive, then parts B and C would also collide. Therefore all four atomic

actions of MTRAN module AB result in collisions, and module AB is unable to disconnect

and move apart from module CD. Simultaneous Actuation can help here. As seen in Fig.

4.7b, if parts A & B turn anticlockwise (ACW) & clockwise (CW) respectively, part B can

safely move away from part C because their facing surfaces remain parallel. Because this

double-action results in behavior inaccessible from successive actions, it must be classed

as a distinct atomic action itself. Hence if simultaneous actuation is enabled by a planner,

there is 4 additional actions15 to consider at any one module state making 8 in total. In

fact the CW/CW and ACW/ACW simultaneous action pairs never useful and can always

be replicated by successive single actions, so only 6 defined actions total are needed to

account for simultaneous actuation of MTRAN modules.

Simultaneous actuations in the CSRP is optional, selected by the user before program

execution. The advantage of simultaneous actuations is a robot has more reconfigurable

15which are two parts turning CW/CW, CW/ACW, ACW/CW and ACW/ACW

126 CHAPTER 4. CENTRALIZED PLANNING FOR 3R-TYPE MODULES

(a) (b)

Figure 4.7: Simultaneously actuated motion of a MTRAN module to avoid a collision,
(edited) from Murata et al. [28]

options. Thus a planner can sometimes find shorter reconfigurations paths (less atomic ac-

tions required to reconfigure) and a small fraction of reconfiguration tasks become possible

that would not be possible otherwise. The cost of these benefits is the increase of the di-

mensionality of the searchable space, increasing execution time. Simultaneous actuation

does not increase the amount of configuration nodes in the configuration space (Fig. 1.4)

but does increase the amount of links between nodes of which the planner must examine

at each state node. This may seem a fair price though, because it is not necessarily a good

idea to be restricting non-simultaneous actions just for the sake of reducing the dimension-

ality of the searchable space so a planner can plan faster slightly faster. The entire reason

for a planner is to exploit knowledge of the hardware such that less moves are required to

reconfigure a robot saving on resources that really matter to a robot like power and time

(the time to execute a reconfiguration in hardware is often orders of magnitude greater than

time needed to discover the reconfiguration solution in software, so often more time in-

vested on computing a better reconfiguration solution is time saved overall). The downside

of simultaneous actuation is that the reward/computational-cost ratio isn’t very high. For

the far majority of reconfigurations, at least for the Superbot module tested in this thesis

simulation, the planner does not find shorter solutions using simultaneous actuation. Their

inclusion often ends in wasted computational effort, increasing execution time by 29%.

4.5. ALGORITHM 127

4.5 Algorithm

The CSRP, written in Java, comprises several important functions which this section serves

to break down and explain. This is in roughly chronological order in which each function

is called, which is top-down. The CSRP begins with input from a user into a GUI (Graph-

ical User Interface) specifying a shape-goal for the robot to morph into, then conducts a

hierarchical search in native kinematic space to find a reconfiguration solution. The source

code of all routines discussed in this section are also available in the attached DVD.

Program flow is shown by Fig. 4.8. The preamble of the program involves waiting for

a user to specify a final shape in the GUI, which Tile Pattern converts into a final configu-

ration that jig-saws the modules into the final shape. At this point the hierarchical search

begins. First, Global Search mobilizes modules that are allowed to detach and gives them

goals location to move to as part of the reconfiguration process. To check if modules are

detachable, Global Search uses the function Connectivity Checker. Global Search passes

each module relocation task to Local Search which searches through the module’s state

space to find an optimal transition path for the module to get to its given goal location. For

Local Search to search the state space of a module, it requires a state representations and

knowledge of the module’s native kinematics which the Transition Model provides. Transi-

tion Model bundles all three hardware-dependent routines; Transition, Collision Detection

and Translation together with some other smaller routines (such as those which ensure

a module cannot take actions that exceed their hardware-defined restrictions). Transition

determines what states link to what states in the searchable state network. Collision De-

tection ensure these links (module actions) are collision-safe, otherwise they are pruned in

the search. Translation serves to take a state-defined action, and translate into a more infor-

mation rich configuration-defined actions for reasons introduced in sec 4.2.2. Each routine

128 CHAPTER 4. CENTRALIZED PLANNING FOR 3R-TYPE MODULES

is described in greater detail below, beginning with a single line function description and

accompanied with pseudo-code where appropriate.

Currently the three routines of Transition Model are partially hard-coded specific to

the Superbot Module. In order to achieve the thesis’ ultimate goal (sec. 1.2) of generality

whilst planning in native kinematic space, these functions will have to be fully automated.

This means they must be able to operate purely from a representation of a module’s design

without relying on any hard-code. This is left as future work (sec.6.3.3).

4.5.1 GUI

GUI (userInput) −→ (Positions) finalShape

The Graphical User Interface (GUI) provides an easy means of submitting a shape goal

into the CSRP. The details of its implementation are not relevant to the planning aspect of

this thesis, but this brief section serves to give an idea of how reconfiguration simulations

are initiated.

Fig. 4.9 shows the simulation initiating with a line of Superbot modules (Fig. 4.9b)

and the corresponding GUI (Fig. 4.9a) where the cells the robot is currently occupying are

grayed in. As the robot was chosen to start with 4 modules, it has 8 parts in which to make

an 8-cell shape. This is selected as the cyan cells in Fig. 4.10a. This is the only information

the planner receives from the user. These cell positions are saved into a collection called

finalShape which is passed to the Tile Pattern routine (sec. 4.5.2), which works out how

modules can be jig-sawed together to form such a shape, and thus derive a configuration

goal. Once Tile Pattern has been called, and the rest of the CSRP executes and the SRR

reconfigures into the desired shape (Fig. 4.10b).

4.5. ALGORITHM 129

Figure 4.8: Program Flow: Organization of CSRP routines

130 CHAPTER 4. CENTRALIZED PLANNING FOR 3R-TYPE MODULES

(a) GUI (b) Robot

Figure 4.9: GUI and corresponding modular robot: Initial state

(a) GUI (b) Robot

Figure 4.10: GUI and corresponding modular robot: Reconfigured state

4.5. ALGORITHM 131

4.5.2 Tile Pattern

tilePattern (finalShape, directionalPreference) −→ (Tiles) finalConfiguration

Configuration goals are ideal for a reconfiguration planner, as they are exact speci-

fications of goal-states the planner should search for amongst the searchable network of

state-nodes. Unfortunately a planner cannot expect a higher level program installed in the

modular robot to pass it a configuration argument to morph into. This is because configu-

rations are hardware-knowledgable representations and part of an SRP’s role is to abstract

away all details to do with hardware specifics for any higher level program calling it. So

this thesis planner is designed to accept a shape goal instead from which it then attempts

to determine how to piece rectangular bipartite modules together to fit into and assume the

given goal shape. Tile Pattern is a routine written to handle this; it finds a configuration-

goal given the 3D shape-goal inputted into the GUI.

If all final configurations that fill such a shape are equally desirable, then Tile Pattern

must find at least one configuration from a set of valid robot configurations that fill this

shape. Although if one wishes to deal with the fact that different configurations will re-

quire a different number of modular movements to transform into, the problem gets more

complex. As always; the least amount of module movements would be ideal, saving time

and power, but which configuration solution this is, is not entirely obvious. This is one

challenge a shape-goal poses to Tile Pattern, a precursor to this is determining the set of

configurations that fit inside the shape goal in the first place.

For bipartite modules, this problem of how to jig-saw modules together to fit inside

a lattice-defined shape is closely related to a field of mathematics called domino tiling.

132 CHAPTER 4. CENTRALIZED PLANNING FOR 3R-TYPE MODULES

Domino tiling examines the numbers of ways a particular shape in a square or cubic lat-

tice can be filled with rectangular dominos that are 1 cell in width and 2 cells in length,

just like MTRAN, Superbot and Roombot (sec. 2.3.4 - 2.3.6). Unfortunately the set of

solutions found by domino tiling explodes with an increasing shape size. For example;

a 2 × 2 × 2 cell shape as shown in Fig. 4.11a has 9 unique tiling solutions. Doubling

the dimensions and a 4 × 4 × 4 shape has 5.05 billion ways it can be tiled, of which Fig.

4.11b shows one example. Extending two of those dimensions to a 6 × 6 × 4 shape there

are 1.23 × 1023 valid tiling solutions [13, p.408] [35, p.759]. The challenge this poses is

that the set of configurations (tiling solutions) for large modular robots is too many to con-

sider comprehensively. Several configuration solutions can be considered to select from (to

choose whichever offers the shortest reconfiguration path16), but definitely not all. Thus a

compromise is needed to balance the number of goal-configurations worth checking against

the computational cost of doing so. There will exist some number of configurations that is

‘reasonable’ to check before the best reconfiguration solution found should be executed as

the probability of finding increasingly more desirable goal configurations decreases with

each examined. What defines ‘reasonable’ above is still an open problem in this thesis and

is important one as the planner’s overall performance is very much dependent on it.

Currently Tile Pattern has only been implemented to the stage where it will find up

to four configuration goals when passed a shape goal to tile. The different configurations

goals it will return is dependent on an optional direction of preference argument which is:

if the routine comes across multiple ways in which to tile a certain region of the shape, is

will align the rectangular modules in this preferred direction. This routine was created by

16shortest reconfiguration path is the minimum distance between two state nodes in the robot’s state net-
work which translates to the least numbers of atomic actions required of the robot to transform from one
configuration to another

4.5. ALGORITHM 133

(a) A 2×2×2 cell cube. There are 9 ways
to tile this shape

(b) A 4 × 4 × 4 cell cube. One of
5,051,532,105 ways to tile this shape

Figure 4.11: Domino Tiling

the author, it is a correct algorithm albeit not a complete one, but nevertheless has shown to

be quite robust in finding tiling solutions to the vast majority of shapes which are possible

to tile.

(a) (b) (c) (d)

Figure 4.12: Tile Pattern case examples; (a) an impossible shape, (b) a possible shape, (c)
tiling with horizontal tile preference, (d) tiling with vertical tile preference

134 CHAPTER 4. CENTRALIZED PLANNING FOR 3R-TYPE MODULES

Algorithm 4.1: Tile Pattern

Tile Pattern begins by searching out over a particular shape, such as those shown in Fig.

4.12, and selects couples of cells to tile which becomes a reserved region in 3D space for a

bipartite module to be placed. Fig.4.12a is an example of an impossible shape to tile; if one

tiles adjacent cells 1 & 3, then 2 & 4 cannot tile, they are not adjacent so a bipartite module

count not exist between them. Other trials are fruitless as well, tiling cells 2 & 3 is fine but

then cells 1 & 4 are left separated. Fig. 4.12b is a possible shape to tile, in fact there are

two ways to solve it as shown by Fig. 4.12c & Fig. 4.12d, however the shape must be tiled

in a particular order to converge on a solution. If the routine first tiles cells 6 & 9, then it

will ultimate fail as it has isolated cell 5. To prevent this, Tile Pattern prioritizes cells with

the least neighbors (cell 5) to tile first (line 3). In order not to create an impossible shape

later on (as cells are ‘removed’ from the consideration once tiled) the cells next selected

will tile up with cell-neighbors that have the least amount of neighbors themselves (lines

10-14). In Fig. 4.12b, cell 5 does not have a choice, it only has cell 6 to tile with. Now

there is a choice, the search is left with 4 cells (cells 7-10) to tile, all have an equal amount

of neighbors. In this case one is randomly selected (whichever comes off the Queue first:

line 6), say cell 7, and given that both its neighbors (cell 8 & 9) have two neighbors each,

both cell 8 & 9 become equally weighted options to tile with. In this case, a direction of

preference (line 12) specifies which neighboring cells to tile with, which is the planner’s

preferred direction to align modules in. Fig. 4.12c shows the result of a horizontal direction

of preference, Fig. 4.12d shows vertical preference.

4.5. ALGORITHM 135

Algorithm 4.1 Tile Pattern
1: for each Part in finalShape do
2: build list of neighbors
3: place Part into Queue that prioritizes by least number of neighbors
4: end for
5: while Queue is not empty do
6: pop next Part off the Queue
7: if Part has no neighbors then
8: return ‘FAIL: finalShape is impossible to tile’
9: end if

10: find which of Part’s Neighbors has the least neighbors itself
11: if there is a tie then
12: select the Neighbor that lies along Part’s DirectionOfPreference
13: end if
14: tile(Part, Neighbor)
15: end while

4.5.3 Global Search

globalSearch (currentConfiguration, finalConfiguration) −→ void

Global Search encompasses most of the SRP’s work. It requires the GUI and Tile

Pattern routines to have specified the final configuration of the robot, from whence it begins

searching the robot’s configuration space for a close-to-optimal path between the robot’s

current configuration and the (desired) final configuration. This function is part of a two-

level search hierarchy. Global Search continually searches for modules that can safely

detach (without causing global disconnection of the robot) and sub goals they can relocate

to to realize a reconfiguration. To relocate modules, it calls upon Local Search to find valid

transition paths between modules’ current and (given) goal states. Local Search is called

multiple times by Global Search, and only by Global Search, and so is the subordinate

routine in the CSRP’s search hierarchy.

In terms of the searchable state space, Global Search dynamically places subgoals

136 CHAPTER 4. CENTRALIZED PLANNING FOR 3R-TYPE MODULES

within this space for the Local Search to link up by using regular search routines such

as breadth first search (BFS). If Local Search is unable to find such a subgoal, Global

Search has some capacity in which to dynamically reposition another subgoal and Local

Search can have another try. What this is, is Global Search telling Local Search to find a

particular path from a certain module to a certain location, if Local Search is unable to do

this (because it is kinematically impossible to do so) then Global Search will select another

module to fill that same location, and execute Local Search again (algor.4.2[line 20]).

Algorithm 4.2: Global Search

Using the final configuration goal (line 2), Global search will continuously place subgoals

in the searchable state space until a reconfiguration is complete (line 3). Each iteration

of Global Search first identifies a set of modules that are allowed to detach and become

mobile (lines 4-8). These modules have to satisfy the Connectivity Checker routine, but

additionally not yet be a part of the goal configuration (the CSRP rejects these on the

ground of planning backwards17). Using one of these mobile modules, the next (tile) of the

final configuration that is not yet filled with a module can then be filled by one of these

potentially mobile modules (lines 9-13). Only the tiles that are physically reachable by

mobile modules are considered (line 10), tiles further out from the SRR structure wait until

interim tile locations fill with modules until they also become reachable. This is the point

where the CSRP differs much from a DSRP because now Global Search attempts to pick

one potential module and one tile to match. The DSRP mobilizes multiple modules and

directs them to move towards the multiple tiles simultaneously.

However for the CSRP, a goal tile is picked, using an order defined by the coordinate
17modules already in the goal state do not necessarily have to be rejected, their temporary use could be

beneficial to other mobile modules however this is a complex matter discussed more in sec. 4.6.1

4.5. ALGORITHM 137

system (line 14). This ensures the packing process of a shape with modules happens uni-

formly and there are no pockets or cavities left in the structure that later become impossible

for modules to move into. Once the goal tile is chosen, the closest potential module will

attempt to fill it using Local Search (lines 18-23). If this Local Search is unsuccessful then

the second closet mobile module will try, and so on. If however the module selected is

the foundation in which it needs to reach the goal tile it will be discounted, because one

module cannot support itself (be in 2 places at once). So this particular module is removed

from the list of potential mobile modules due to goal-tile placement (lines 15-17). If one of

these mobile modules is able to fill the goal tile from the final configuration, Local Search

returns a positive flag (line 20) and so Global Search begins a new iteration (line 3) to

search for the next potentially mobile modules and suitable tiles. Else, Global Search fails

and displays that it is unable to find a valid reconfiguration solution (line 25).

4.5.4 Connectivity Checker

connectivityChecker (Module, CurrentConfiguration) −→ (Boolean) IsDetachable

Identifying Surface Moving Modules

Routines for ensuring global connectivity have been borrowed from the Million Module

March (MMM) planner (sec. 3.7) and adapted from cubes to modules. This routine at-

tempts to finds connection cycle (sec. 3.7.2) among a module’s neighbors, which is found,

guarantees a module can safely become mobile and move away whilst conserving global

connectivity of the modular robot. Hence this routine is called to identify potential surface

moving modules to begin a reconfiguration.

138 CHAPTER 4. CENTRALIZED PLANNING FOR 3R-TYPE MODULES

Algorithm 4.2 Global Search
1: FinalShape = GUI(userInput)
2: FinalConfiguration = tilePattern(FinalShape,DirectionalPreference)
3: while CurrentConfiguration 6= FinalConfiguration do
4: for each Module in CurrentConfiguration do
5: if (connectivityChecker(Module, CurrentConfiguration) = isDetachable AND

Module is not yet a tile in FinalConfiguration) then
6: add Module to set of potential mobile modules
7: end if
8: end for
9: for each Tile in FinalConfiguration do

10: if Tile does not contain a module AND Tile is adjacent to a current Module then
11: add Tile to set of potential sub goals
12: end if
13: end for
14: GoalState = tile from set of potential sub goals with highest X-coordinate, then Y-

coordinate, then Z-coordinate
15: if (any Module is the only way a module in GoalState would be connected to Robot

AND Module is a member of set of potential mobile modules) then
16: remove Module from set of potential mobile modules
17: end if
18: place each potential mobile module into Queue ordered closest to farthest distance

from GoalState
19: while Queue is not empty do
20: if localSearch(next Module in Queue, GoalState, CurrentConfiguration) =

(Boolean) successful then
21: BREAK
22: end if
23: end while
24: if no local searches successful then
25: return FAIL: ‘No module was able to reach the last goal state’
26: else if CurrentConfiguration = FinalConfiguration then
27: print SUCCESS ‘Robot reconfiguration complete’
28: end if
29: end while

4.5. ALGORITHM 139

Identifying Helper Modules

Once surface moving module(s) have been identified and given permission to mobilize,

the next step is to identify helper modules (sec. 4.4.1) to help their motion. Identifying

helpers is a similar process, requiring only one part of the helper (the end-effector) to be

able to disconnect from a structure and move around. This is a more lenient connectivity

test, and all potential surface moving modules have are also potential helpers, but not all

helpers are able to be surface moving modules. Fig. 4.13 shows an example of a poten-

tial surface moving module acting as a helper; as such either part can be the end-effector

or base. To make sense of this, the planner considers these as entirely different helper

modules. Both modules on the end of the module chain (top-right or bottom-left) are also

potential helpers, though only their unconnected parts can be end-effectors else they would

disconnect themselves.

Algorithm 4.3: Connectivity Checker

Connectivity Checker begins searching out from each connected neighbors to the module

in question, to see if they are independently connected to each other, either directly or

indirectly through the presence of other modules. A unique search (Breadth First Search

(BFS), line 3) begins at every neighbor, referenced by the neighbor module’s unique ID

number. Searches keep tabs of which modules they visit on a list (lines 4,17), which is

visible to all searches. If one search finds another as it spreads out through the modular

cluster (line 14), they join; in which one adopts the reference ID of the other (line 15). If

all BFS searches from each neighbor eventually amalgamate into one, this guarantees the

presence of a connection cycle (sec. 3.7.2) and the module in question can become mobile

without violating global connectivity.

140 CHAPTER 4. CENTRALIZED PLANNING FOR 3R-TYPE MODULES

(a) (b) (c)

(d) (e)

Figure 4.13: One module acting as two helper modules, (a) default position, (b) & (c) show
possible configurations of one helper module, (d) & (e) show possible configurations of the
second helper

4.5. ALGORITHM 141

Algorithm 4.3 Connectivity Checker
1: initialize list of visited modules
2: for each Neighbor of Module do
3: initialize a BFS[Neighbor]
4: visit(Neighbor, ‘Neighbor ID’)
5: end for
6: while depth < maximum search depth do
7: for each Neighbor of Module do
8: Parent = next module from BFS[Neighbor]
9: Children = getNeighbors(Parent, CurrentConfiguration)

10: for each Child do
11: if Child = Module then
12: continue
13: end if
14: if Child has been visited by a Different Neighbor then
15: join(BFS[Neighbor], BFS[Different Neighbor])
16: else
17: visit(Child, ‘Neighbor ID’)
18: add Child to BFS[Neighbor]
19: end if
20: end for
21: end for
22: end while
23: if all BFS[Neighbors] have been joined into a single BFS then
24: return true: ‘Neighbors found each other independently of Module’
25: else
26: return false: ‘Module is required for global connectivity’
27: end if

142 CHAPTER 4. CENTRALIZED PLANNING FOR 3R-TYPE MODULES

4.5.5 Local Search

localSearch (MobileModule, GoalState, CurrentConfiguration) −→ (Boolean) isSuccess-

ful

Local Search is used to relocate modules from their current states to goal states, given

by the Global Search routine. Its search is through native kinematic space, building a

state network18 respective to one mobile module outwards from the goal state over the

structural topology (all other modules) of the SRR. When Local Search comes across the

module’s current state (such as that exampled by Fig. 4.2) it stops. Local Search uses

aspects of dynamic programming (sec. 3.2.3) from this point, as Million Module March

(sec. 3.7.2) also does, to propagate out a navigation function from the goal state. This

allows any mobilized module to navigate towards the goal states by considering the value of

desirability that the navigation function has labeled each state with (stored in a hashtable).

This allows mobile modules to make optimal decisions in regards to locomotion, in order

to relocate to their given goal state in a minimum number of atomic actions. Local Search

is both a correct and complete algorithm in this regard.

The navigation function in Local Search begins with the goal state (passed in from

Global Search), and assigns the goal state with value ‘0’. To calculate the values of other

states; every state-transition incurs a penalty cost of ‘-1’ to represent time and energy for

a module to physically transition to another state. As this navigation function propagates

outwards from the goal-state, its immediate state-neighbors will have values of ‘-1’, and

their neighbors will have value ’-2’. An exception here is if that neighbor’s neighbors is the

goal state again. To get around this problem, states will only try opt to increase their current

18as discussed before, a state network is a collection of states a mobile module can be in. The links between
state-nodes are valid actions a module can take from a respective state-node

4.5. ALGORITHM 143

Figure 4.14: State network example: desirability values mark each state for a mobile mod-
ule to consider (states are represented by circles, and module actions are represented by
lines which link states)

value function. I.e. the goal state will not assign itself a value of ’-2’ if it is already a ’0’.

Likewise if a state in that state space has not been searched before, and has two neighbors

that are valued ’-5’ and ’-9’, it will be labeled a ‘-6’, due to selecting the best neighbors and

adding on a transitional cost of ‘-1’. An example diagram of such is Fig. 4.14, the darker

shaded circle-node representing the goal state.

Algorithm 4.4: Local Search - Find Path

Local Search being searching from the goal state outwards to the current mobile-module

state. Hence goal is the first entry added into a queue of state nodes to expand (line 2). The

search will continue searching whilst there are still state nodes reachable to a hypothetical

module at the goal state (line 3). For a modular robot of a few 10’s of modules, there is

no more than several 100,000 states and so the search will still commence within a short

amount of time if it cannot find the current mobile module state (line 20). The search

progresses by expanding the nodes of every state pulled off the front of the queue (lines

144 CHAPTER 4. CENTRALIZED PLANNING FOR 3R-TYPE MODULES

4-7). Transition Model is used to determine if a particular action from a state is valid given

the current robots configuration (line 6). This checks:

1. The mobile module is not overextending its degrees of freedom if they have restric-

tions (inherent to a module’s design)

2. Taking such an action will not collide with anything by using the Collision Detection

routine discussed in sec. 4.5.7

A double link is created between each expanded node and its parent (line 8), such that

executing of the search path afterwards is quick. If the search reaches the current module

state (lines 9-12) it will call on algor.4.5 to execute the module’s motion. Expanded child

states are then given a value of desirability (lines 13-16). This is the dynamic planning

in action, which would create a state network resembling something like Fig. 4.14. The

search will continue expanding nodes until it exhausts them all, and which case it fails (line

20).

Algorithm 4.5: Local Search - Execute Path

Executing the Local Search is a matter backtracking through the state values of desirability.

This is quick routine linearly proportional to the number of states the module will travel.

While the mobilized module is not yet at the goal state, it will search out each state-neighbor

it can transition to in one atomic action (lines 2-4). It will then attempt to execute the action,

but because this module has taken advantage of isomorphisms such state-action needs to

be translated into a configuration-action (line 5). A description of the Translation routine

(sec. 4.5.8) discusses this further.

4.5. ALGORITHM 145

Algorithm 4.4 Local Search: Find Path
1: build list of visited states
2: add GoalState to Queue
3: while Queue is not empty do
4: State = pop off next Queue element
5: for every Action a module can take do
6: if transitionModel(State, Action) = (Boolean) valid action then
7: ChildState = transition(State, Action)
8: add ChildState to State’s list of neighbors and vice versa
9: if ChildState = the current state of MobileModule then

10: CALL executePath(MobileModule, GoalState)
11: return SUCCESS: ‘Local Search linked MobileModule to GoalState’
12: end if
13: if (ChildState has not yet been visited OR value of ChildState < value of State

- 1) then
14: value of ChildState = value of State - 1
15: add ChildState to back of Queue
16: end if
17: end if
18: end for
19: end while
20: return FAIL: ‘exhausted all search paths, no transition path was found’

Algorithm 4.5 Local Search: Execute Path
1: while MobileModule state 6= GoalState do
2: for each neighboring state of the state MobileModule is currently in do
3: find the most desirable neighbor state to transfer to (the most value)
4: end for
5: EXECUTE translation(Action which transfers MobileModule’s current state to most

desirable neighbor state)
6: end while

146 CHAPTER 4. CENTRALIZED PLANNING FOR 3R-TYPE MODULES

4.5.6 Transition

transition (state, action) −→ (State) newState

Transition answers the following; if a module were in a certain state, and it took a

certain action, what new state would it end up in? The planner’s Local Search needs this

function when expanding state-nodes as part of its search routine. Expanding a node means

to look through all valid actions that state can take, and to know which state-nodes they lead

to. Transition is hardware-dependent, its implementation is ultimately dependent on how

a module’s state is defined (sec. 4.3). It is also dependent on the native kinematics of the

module, i.e. what actions are available to the module in such a state. Usually taking dif-

ferent actions will lead to different module-states, otherwise they would be redundant and

increase search complexity unnecessarily19. To plan reconfiguration of robots of arbitrary

module designs, Transition needs to be automated. This is a complex task, and discussed

further in sec.6.3.3.

There are 16 fixed state-actions this thesis planner allows a Superbot module to take

as indexed in table 4.1. Additional state-actions also become available for every helper’s

proximity20 a mobile module is in. These are for the ability to engage with a helper for aid

in relocating as discussed in sec. 4.4.1. Actions -2, 0 - 5 & 7 (table 4.1) are always available

to a module to execute as long as Transition Model verifies they are safe/possible. Some

action are not possible due to a module’s degree of freedom restrictions. Both Superbot

part’s are able to move about their part-axles over a range -90 degrees to +90 degrees.

Hence if the mobile module’s unconnected part is at +90 rotation about its part axle already

19in this thesis planner’s implementation with Superbot modules, sometimes actions 4 & 5 as listed below
lead to the same state, but not always, it depends on how both parts are oriented about their degrees of
freedom. It also depends on whether anything is connected to the module, such as if it acting as a helper
module. For these reasons both actions 4 & 5 are kept

20defined in sec. 4.4.1

4.5. ALGORITHM 147

Figure 4.15: An example of Superbot performing a simultaneous move, in which the un-
connected part always has its face directed in the same direction

say, a simple check by Transition Model would inform Local Search that ‘action 0’ is not

valid, as this would attempt to turn the part forwards21 beyond +90 degrees, which the

hardware will not allow.

Actions in 8 to 15 become available to a mobile module when engaged to a helper, this

allows it to control the helper’s state in the same way it controls itself, as seen in the resem-

blance of action descriptions 10-15 and 0-5. When engaged, a module also has the ability

to disengage from its helper (action #16), in which it releases control of the helper. This is

enforced by the planner when a mobile module attempts to move outside the influence of a

currently engaged helper module to reduce the size of the searchable state space (discussed

sec4.4.1). When a module is not engaged to any module, it may have several engaging

actions. For example if it is in the proximity of four helpers, actions 16 - 19 become avail-

able, each of which will engage the mobile module to a respective helper module. Action 6

is a simultaneous action was available to mobile module but not helper modules yet. Their

inclusion is optional and is discussed in section 4.4.2). This planner defines a simultane-

ous action as: both parts turning about their part-axles in opposite directions such that the

unconnected part’s face direction does not change as shown in Fig. 4.15.

21Definition: forwards turning for actions 0-3 and 10-13 is defined any angle that increased the rotational
position of the part about its own part-axle. This in turn is defined as so: A part is at 0 degrees if the part’s
face is aligned with the central pin (Fig. 4.3), it is +90 degrees if the part’s face is point in the position X/Y/Z
direction, and -90 degrees if pointing in the negative X/Y/Z direction

148 CHAPTER 4. CENTRALIZED PLANNING FOR 3R-TYPE MODULES
Ta

bl
e

4.
1:

A
ct

io
n

In
de

x

C
od

e
A

ct
io

n
N

am
e

D
es

cr
ip

tio
n

-2
fu

lly
co

nn
ec

t
al

lc
on

ne
ct

or
s

of
a

m
od

ul
e

to
fo

rm
co

nn
ec

tio
ns

if
po

ss
ib

le
-1

th
e

nu
ll

ac
tio

n
0

in
c

un
co

nn
90

de
g

un
co

nn
ec

te
d

pa
rt

ro
ta

te
s

fo
rw

ar
ds

ab
ou

ti
ts

ax
le

by
90

de
gr

ee
s

1
de

c
un

co
nn

90
de

g
un

co
nn

ec
te

d
pa

rt
ro

ta
te

s
ba

ck
w

ar
ds

ab
ou

ti
ts

ax
le

by
90

de
gr

ee
s

2
in

c
co

nn
90

de
g

co
nn

ec
te

d
pa

rt
ro

ta
te

s
fo

rw
ar

ds
ab

ou
ti

ts
ax

le
by

90
de

gr
ee

s
3

de
c

co
nn

90
de

g
co

nn
ec

te
d

pa
rt

ro
ta

te
s

ba
ck

w
ar

ds
ab

ou
ti

ts
ax

le
by

90
de

gr
ee

s
4

in
c

ce
nt

ra
l9

0
de

g
pa

rt
s

tw
is

ta
nt

ic
lo

ck
w

is
e

fr
om

co
nn

ec
te

d
pa

rt
’s

pe
rs

pe
ct

iv
e

5
de

c
ce

nt
ra

l9
0

de
g

pa
rt

s
tw

is
tc

lo
ck

w
is

e
fr

om
co

nn
ec

te
d

pa
rt

’s
pe

rs
pe

ct
iv

e
6

si
m

ul
ta

ne
ou

s
ac

tio
n

bo
th

pa
rt

s
ro

ta
te

,u
nc

on
ne

ct
ed

pa
rt

’s
fa

ce
di

re
ct

io
n

is
un

ch
an

ge
d

7
sw

itc
h

co
nn

ec
tio

n
un

co
nn

ec
te

d
pa

rt
co

nn
ec

ts
,t

he
n

co
nn

ec
te

d
pa

rt
di

sc
on

ne
ct

s
8

co
nn

ec
t/d

is
co

nn
ec

tc
on

n
fr

om
he

lp
er

co
nn

ec
te

d
pa

rt
to

gg
le

s
its

co
nn

ec
tiv

e
st

at
us

w
ith

he
lp

er
9

co
nn

ec
t/d

is
co

nn
ec

tu
nc

on
n

fr
om

he
lp

er
un

co
nn

ec
te

d
pa

rt
to

gg
le

s
its

co
nn

ec
tiv

e
st

at
us

w
ith

he
lp

er
10

in
c

en
d

90
de

g
he

lp
er

’s
en

d
pa

rt
ro

ta
te

s
fo

rw
ar

ds
ab

ou
ti

ts
ax

le
by

90
de

gr
ee

s
11

de
c

en
d

90
de

g
he

lp
er

’s
en

d
pa

rt
ro

ta
te

s
ba

ck
w

ar
ds

ab
ou

ti
ts

ax
le

by
90

de
gr

ee
s

12
in

c
ba

se
90

de
g

he
lp

er
’s

ba
se

pa
rt

ro
ta

te
s

fo
rw

ar
ds

ab
ou

ti
ts

ax
le

by
90

de
gr

ee
s

13
de

c
ba

se
90

de
g

he
lp

er
’s

ba
se

pa
rt

ro
ta

te
s

ba
ck

w
ar

ds
ab

ou
ti

ts
ax

le
by

90
de

gr
ee

s
14

in
c

he
lp

er
ce

nt
ra

l9
0

de
g

he
lp

er
pa

rt
s

tw
is

ta
nt

ic
lo

ck
w

is
e

fr
om

ba
se

pa
rt

’s
pe

rs
pe

ct
iv

e
15

de
c

he
lp

er
ce

nt
ra

l9
0

de
g

he
lp

er
pa

rt
s

tw
is

tc
lo

ck
w

is
e

fr
om

ba
se

pa
rt

’s
pe

rs
pe

ct
iv

e

4.5. ALGORITHM 149

4.5.7 Collision Detection

collisionDetection (state, action) −→ (Boolean) willCollide

Collision Detection answers the following; if a module were in a certain state, and it

took a certain action, would this module collide with another module? This form’s part of

the planner’s Transition Model and is required when expanding state-nodes to verify which

action-links are safe.

Early Routine: Hard Coded

Initially Collision Detection was purely hard-coded, when the planner only planned for

single module movements. The function was a big switch-case routine that took different

combinations of state & actions and matched them to a set of cell positions relative to a

module’s state that the module would encroach on when taking a certain action. These

encroached cells would all need to be vacant (no modules currently located in them) for

an action to be valid, otherwise the module would collide with another there. There were

originally 7 moving-actions a module could take (actions 0-6 as defined in sec. 4.5.6). Ac-

tions 0-1 rotate the unconnected part either forwards or backwards 90 degrees and require

two vacant cells as shown in Fig. 4.16a. Twisting actions of the central pin (actions 4-5)

requires four vacant cells around the unconnected part that will be the one moving, as seen

in Fig. 4.16b. For actions involving the connected part, turning it 90 degrees (actions 2 &

3), the cells that need to be vacant around it are dependent on the module’s part axles as

well, if they are aligned or not. The vacant cell requirements for these actions are shown

in Figs. 4.17 & 4.18. There are 3 red squares indicating the module connected part, and

the unconnected part’s start and finish cells. Lastly, the simultaneous action is also shown

in Fig. 4.19. The benefits of this actions were discussed in sec. 4.4.2 and are seen here.

150 CHAPTER 4. CENTRALIZED PLANNING FOR 3R-TYPE MODULES

(a) Actions 0 & 1: unconnected
part turning 90 degrees

(b) Actions 4 & 5: twisting central
pin

(c) Legend

Figure 4.16: Unconnected part actions (view along spin axis)

Notice how an unconnected part that is facing upwards in the bottom-middle cell can move

upwards to connect its face connector to whatever module may be located in the top-left

cell. Looking at Fig. 4.17a, a module trying to orient itself in the same way without simul-

taneous actuation encroaches on the top-left cell, and thus would collide with any module

before it has a chance to connect.

Current Routine: Almost hard-code free

Currently, Collision Detection is mostly automated. A geometrical routine was written

that takes a group of modules and an axis of rotation, and records all the cells encroached

on by each module in the group as the whole group swings though 90 degrees in a given

4.5. ALGORITHM 151

(a) (b)

Figure 4.17: Actions 2 & 3: connected part turning 90 degrees: parallel part axles (view
along spin axis)

Figure 4.18: Actions 2 & 3: connected part turning 90 degrees: perpendicular part axles
(view along spin axis)

Figure 4.19: Action 6: both parts turn simultaneously, both axle parts must be parallel
(view along spin axis)

152 CHAPTER 4. CENTRALIZED PLANNING FOR 3R-TYPE MODULES

(a) encroached cells; example from a part not in-
line with center of rotation

(b) encroached cells; example from a part in-line
with center of rotation

Figure 4.20: Collision detection: encroached-cells from one part’s transition though space
by 90 degrees, starting at cell ‘S’ and finishing at cell ‘F’. The dotted cell represents the
center of rotation

direction. This is done by locating the nearest and furthest point on each module part’s

surface from the center of rotation. It then follows radii out from these points (about the

center of rotation) for 90 degrees, and lists all the cells that have vertices within the min

radii - max radii section. Cells with vertices within this section will either be partially

or fully encroached on, but encroached on nevertheless so must be vacant for a particular

action to be marked safe and valid. Fig. 4.20 shows two examples of the cells encroached

on by one part.

This automation needed to be included when helpers were introduced to this thesis, the

prospect of hard-coding all state/action combinations to map to encroached-cell lists was

too daunting. It is also part of this thesis ultimate goal, to be able to plan reconfigura-

tions for arbitrary module designs. To do so, Collision Detection must be fully automated

4.5. ALGORITHM 153

without relying on any hard-code. The only hard coded parts in Collision Detection is to

determine the cells at the start and finish regions of these min/max radii lines drawn out.

The planner does not account for certain curved surfaces of the modules, and so wrongly

marks some cells as encroached and wrongly marks some cells as not encroached in these

locations. Hard coding specific to the module’s design fixes up this small number of ‘mis-

takes’ the autonomous part makes (algorithm 4.6 lines 23-27). Automating this last section

of hard code is possible, but complex22 and will take time.

Algorithm 4.6: Collision Detection

Collision Detection begins by calculating general information about a swinging-arm of

modules, such as center of rotation, the plane it is spinning on and the rotation direction

(lines 1-3). It must check every module’s part that make up the module’s arm to check if

it will collide with something (line 4), and so this routine can be executed on an arbitrary

number of connected modules even though this planner only ever uses it for just 2 modules

(a helper and a mobile module). For each part, a several radius arcs are ‘drawn’ out to

discover which cells gets encroached on (as seen in Fig. 4.20. To search this a ‘current-

cell’ is initiated at the part’s start position (line 9), and tracks this radius curve. By tracking

this curve, the current-cell is always a cell that the part will encroach on, thus if a module

part is there, a collision would occur, and the routine can return (lines 13-18). Obviously

if the part there belongs to the swinging arms of modules, this will not collide as both

module parts will move as one so this needs accounting for (line 15). To ‘track’ this radius,

and once the current cell has checked no part exists in its location (line 15), it searches

22it requires a standardized way of representing arbitrary modules geometrically, such that when the plan-
ner changes to a different module type, a ‘geometric description’ can be passed to Collision Routine to
autonomously derive all encroached cells. The ‘complexity’ will be in developing both a ‘standardized geo-
metric description’ and an extra subroutine in Collision Detection to make sense of this

154 CHAPTER 4. CENTRALIZED PLANNING FOR 3R-TYPE MODULES

(a) try-cells from a cell not in-line with center of
rotation

(b) try-cells from a cell in-line with center of ro-
tation

Figure 4.21: Collision detection: try-cells. From collision detection search’s current cell it
has checked, it will progress to one of these try-cells in an order as shown by the numbers
to find the next cell that this part will encroach on. (A part starts at cell ‘S’ and finishing at
cell ‘F’. The dotted cell represents the center of rotation)

neighboring cells for the next ‘current-cell’ to check. As the radius is a continuous line,

there will always be a cell either adjacent to or diagonal to the current-cell which the radius

intersects. The current-cell tests out try-cells to see which one this is, in a particular order

as shown in Fig. 4.21. This order is a result of testing to code, to ensure a search does not

go backwards. It also ensures a search does not skip over a cell, as it is possible that more

than one try cell will be encroached on, and both can still be ‘current cells’ and check for

collidable objects if done so in the correct order, but if not done in the correct order the

’more forward’ try-cell could be selects which will progress the search onwards and forget

to consider the cell it left behind.

4.5. ALGORITHM 155

(a) forbidden-cells from a cell not in-line with
center of rotation

(b) forbidden-cells from a cell in-line with center
of rotation

Figure 4.22: Collision detection: forbidden-cells. These marks the beginning and end of
an ‘encroached cell search’ that the search should not go beyond. (A part starts at cell ‘S’
and finishing at cell ‘F’. The dotted cell represents the center of rotation)

Forbidden cells (Fig. 4.22) are placed in order to indicate to a search when to stop

cell-tracking, and also as an extra precaution that the search does not go backwards when

current-cell begins at the starting part position ‘S’. No try-cells that are also forbidden cells

are considered (line 13) and when the next current-cell is the final position the part will

end up in after a 90 degree turn (line 10), the search for this particular part completes, and

another starts (line 4).

Different parts of the part will collide will be responsible for encroaching on different

cells, as seen by the different encroached cell shading of Fig. 4.20. Therefore each part

needs to have several radii search from different parts of its geometry to work out every

cell possible that be encroached on (line 8). This includes a radius made by the closet and

by the farthest points on a part’s shape. Sometimes this is enough as seen in Fig. 4.20b, but

it can occasionally miss the odd cell as seen by the white cell in between both radii in Fig.

4.20a. To account for this a ‘center radius’ is drawn out from the module part’s position as

156 CHAPTER 4. CENTRALIZED PLANNING FOR 3R-TYPE MODULES

well (line 8). As mentioned, some hard coded cells are checked at the routines end, that fix

up ‘mistakes’ made by this routine just described, by adding in some more cells to check

that are dependent on module geometry. At the moment this hard code is specialized to

the Superbot module sec. 2.3.5. Finally if no cells that will be encroached on contained

modules the swinging arm will collide into, this routine return ‘false’ (line 28).

4.5.8 Translation

translation (module, state-defined action) −→ (Action) configuration-defined action

As discussed in sec. 4.2.2, there can be many configurations to a single isomorphic

state of a module, and to execute a movement, the planner will (at the last minute) require

a module’s full configuration description to perform an action. For example, if a Superbot

module (sec. 2.3.5) were to turn one of its parts 180 degrees, it is still in the same state,

as it functionally equivalent to before, yet the actuator polarity that drives the part’s face

forwards/backwards +/- 90 degrees will be reversed. If configuration is not taken into

account, the actuators could perform the opposite action to what is desired due to lack of

information. This is simply a matter each module keeping a log of its own configuration,

not to be searched, but for these last minute action-translation from state-defined actions to

configuration-defined actions.

4.5. ALGORITHM 157

Algorithm 4.6 Collision Detection
1: get center of rotation
2: get direction of spin axis // (X or Y or Z)
3: calculate spin direction // (clockwise or anticlockwise)
4: for each module Part in Swing-Arm do
5: get Start-cell of Part
6: get Finish-cell of Part
7: get Forbidden-cells
8: for Radius = [Closest, Center, Farthest] surface points of Part to center of rotation

do
9: Current-cell← Start-cell // (initialize)

10: while Current-cell 6= Finish-cell do
11: get next Try-cells based on Current-cell
12: for each Try-cell do
13: if Try-cell is intersected by Radius AND Try-cell 6= a Forbidden-cell then
14: Current-cell← Try-cell // (update)
15: if Current-cell contains a part that does not belong to Swing-Arm then
16: return True: ‘part Part will collide with cell Try-cell’
17: end if
18: end if
19: end for
20: end while
21: end for
22: for all hard-coded Cells to check near Start-cell and Finish-cell do
23: if Cell contains a part that is not in Swing-Arm then
24: return True: ‘part Part will collide with cell Cell’
25: end if
26: end for
27: end for
28: return False: ‘no collisions will occur. Every encroached cell does not contain a part

not of Swing-Arm’

158 CHAPTER 4. CENTRALIZED PLANNING FOR 3R-TYPE MODULES

4.6 Evaluation

This section evaluates the CSRP in terms of its performance and capabilities. An analy-

sis explores CSRP properties which follows with some example reconfigurations currently

achievable by the CSRP. Being a deterministic software algorithm; testing does not play

as significant a role as for stochastic planners because it either will perform a certain re-

configurations or it will not. Nevertheless it is still of interest to ascertain the competency

of the CSRP; what subset of reconfigurations are currently achievable, and also to deter-

mine which design goals have been met with a study of relevant reconfiguration statistics

compiled for each example.

Overall, the CSRP has shown that planning modular reconfigurations in native kine-

matics is efficient; allowing a planner to reduces the size of the state space substantially by

exploiting module lattice structure and symmetries as much as possible. It also maximizes

the use of module functionality, considering all actionable options possible. This is in con-

trast to generic planners designed to be portable between hardware types at the expense

of using a module’s complete functionality or planners that restrict themselves to reconfig-

urations of metamodules in order to simplify the search process. Ultimately a good SRP

should take full advantage of the hardware at its disposal, and native kinematic planners

like the CSRP do this.

4.6.1 Analysis

This centralized planner written in Java can autonomously reconfigure Superbot-based

robots between arbitrary shapes via serial locomotion of motions. The CSRP is tested

in simulation using Java3D as a visual debugging tool using a Superbot simulator written

4.6. EVALUATION 159

by David Brandt from the ISI. Time complexity of computing a reconfigurable solution is

at most quadratic polynomial with the number of modules in the system. This quadratic re-

lationship prohibits scalability of this algorithm, however all centralized planners are faced

with the problem of having higher-than-linear time complexity and thus are always unsuit-

able choices for modular robots. What this planner successfully prototypes is a method of

planning in native kinematic space achieving close-to-optimal robot reconfigurations, de-

fined as the least number of atomic actions required needed to reconfigure. A decentralized

version of this planner is scalable and discussed in chapter 5.

Memory Usage

Memory usage is an important consideration in modular robotics as each module has a

limited memory capacity from which to allocate to non-routine computational tasks like

reconfiguration planning. Using today’s off-the-shelf memory devices, modules can be

fitted with several SD memory cards regularly used in personal cameras supplying memory

capacities of several gigabytes per module [3]. In many cases, planning with this amount

of memory is more than adequate. Exceptions include large lookup tables for modules to

refer to in a variety of situations where certain action sequences can be stored as macros,

or planners that use elements of artificial intelligence that prefer ever-growing knowledge

bases to optimize their decision making.

The principal usage of memory is Local Search’s creation of state networks, specifi-

cally the states within the state network. Super states require 756 bytes each, of which

most mostly comprises the mobile module state (opposed to the helper module states

which are indexed due to high usage) at 704 bytes out of the 756. The reason for this

cost is the class doesn’t just hold values of primary variables that define it (listed in sec.

160 CHAPTER 4. CENTRALIZED PLANNING FOR 3R-TYPE MODULES

4.3), it also holds supplementary variables that help calculate neighboring states and other

frequently-accessed information such as connector locations and pointers to neighbor-

ing states etc. Worst case scenarios included every structural module is a double-helper

(where both module parts have the capacity to be the helper end or base part) contributing

19020 states to the state network. This however does not boost memory requirements by

19020 × 756bytes = 13.7MB as all mobile module states (the memory expensive part of

704 bytes) are shared by storage in a hashed set which multiple super states point to23, thus

saving the duplicated work and storage of the supplementary information accompanying a

state. There can only be 2808 mobile module states within the proximity of each helper, so

worst case scenario is 19020× (756− 704)bytes+ 2× 2808× 704bytes = 4.71MB. This

is not severe, memory requirements increase linearly with the amount of modules present,

so a 2GB-RAM computer used to simulate these reconfigurations could potentially solve

reconfigurations of 434 Superbot modules24, however in practice the Java3D Superbot sim-

ulator limits this to approx 55 modules by reserving memory for itself for the 3D modeling

and graphical output.

Execution Time

Time complexity of the CSRP is quadratic polynomial with the robot’s number of modules,

which is the best relationship a centralized planner can expect to achieve, and exampled in

section 4.6.2. Reconfiguration simulations have been conducted with up to 20 modules

which incur execution times in the order of several minutes using a single 2GHz processor.

23for example if a certain superstate involves a mobile module state and a disconnected helper module
state, the helper module could move which would change the superstate. However the mobile module state
itself has not changed (the mobile module did not move) so its information should not have to be recalculated,
instead both these superstates independently point to that particular mobile module state

242GB/4.71MB ≈ 434

4.6. EVALUATION 161

There are several main factors that determine execution time. One is clearly the dis-

similarity between a robot’s initial and final configurations; if both shapes are very similar

then only a few modules need relocating and a solution would be found in a small amount

of time. Conversely extremely dissimilar configurations will require the relocation of most

modules, each relocation warranting the creation of a new state-network which is rela-

tively time expensive. A second factor in execution time is the number of helper modules

present. As mentioned in section 4.4.1, helper modules are the biggest contributors to a

state-network’s size. The amount of helper modules in a robot cluster is dependent on its

configuration; helper modules must have at least one part that can detach and move about

without violating global connectivity. In the current CSRP implementation all modules

which be verified to do this (using Connectivity Checker; sec. 4.5.4) that are not already

classed as mobile modules are thus classed as helper modules. This increase in state-

network size necessitates more planning time from the CSRP as seen later in table 4.2. A

possible improvement on the CSRP is to limit the amount of module classed as helpers.

This would remove their ability to help mobile modules but many helpers never get the

chance to help anyway. If a more sophisticated method can be developed that determines

which potential helper modules will be used and which will not then a significant amount

computation could be spared.

The CSRP spends most of its time within the Local Search (sec. 4.5.5) routine, linking

up state networks after they have been populated, particularly in the Collision Detection

routine (sec. 4.5.7) comprising 55% - 75% total execution times (depending on the recon-

figurable shape). Even though the quadratic relationship of the CSRP is unavoidable, exe-

cution time can potentially be scaled back by further optimizing Collision Detection. This

162 CHAPTER 4. CENTRALIZED PLANNING FOR 3R-TYPE MODULES

could be done by tabulating the encroached cells 25 for all possible state-action pairs which

would only be a once-off mass computation. Referencing this instead of running Collision

Detection again could cause a 2 to 4 fold reduction of execution time (based on the 55%

& 75% values) depending on the reconfigurable shape. Such a ‘mass computation’ would

required the examination of over 101,000 possible superstates each of which can perform

up to 17 possible actions. This computation can be independently computed and stored in

a data file for all future CSRP simulation to access and works out to be roughly 145MB in

size26. Whilst this may not be a problem for desktop computers conducting CSRP simula-

tions, one must ensure modules had adequate free memory to each store the 145MB table

to take advantage of this under the DSRP implementation.

Correctness & Completeness

The CSRP is a correct27 program however is not a complete28 one. Correctness has been in-

dependently tested with the Superbot simulator software which is used to provide visuals29

of robot reconfigurations directed by the CSRP. The simulator uses the Java3D engine to

throw errors if simulated 3D objects (modules in this case) pass through each other, which

is a collision in the real world and would violate program correctness. The second factor of

correctness; maintaining global connectivity is verified independently by the Superbot sim-

ulator itself (not the Java3D engine) which requires global connectivity of any simulation,

25is first computes any cells a particular move will encroached on (a time consuming task as discussed in
sec. 4.5.7), and then checks if any of those cells currently contain other modules

26calculated using the average number of encroached cells each state-action pair produce (3.53), and the
memory required by a java virtual machine to store Point3i (3D location) objects

27correct is defined by; if a program finds a solution, then that solution is correct. A correct reconfiguration
means no collisions and no global disconnections

28complete is defined by; if there is a solution to be found then the program will find it
29such as the figures throughout section 4.6.2

4.6. EVALUATION 163

and will throwing an exception if this occurs. CSRP has its own routines prevent either col-

lisions or global disconnections; Collision Detection and Connectivity Checker (sec. 4.5.7

& 4.5.4), however the Superbot simulator and Java3D simulations have confirmed CSRP

correctness independently.

Completeness has not yet been achieved. The CSRP can handle a large subset of arbi-

trary reconfigurations however fails in more complex cases which demand the temporary

use of some modules as ‘scaffolding’ that others modules use to climb over. Currently

the CSRP has no way of dealing with temporary relocation of modules for the packing

benefit of others. Such a task presents a host of new challenges including ensuring that

no scaffolding-type modules get stuck in situ by surrounding modules when they next get

called to relocate. The thesis work by Ben Itzstein and Michael West mentioned in the

preface extends Million Module March’s capabilities to handling the temporary placement

of some cubes for the sake of robot stability, but to the authors knowledge no existing SRP

yet deals explicitly with the challenge of the intentional use of ‘scaffolding-modules’ in an

intentional fashion for the purpose of reconfiguring otherwise non-reconfigurable shapes.

One example of this is the ‘line-to-ring’ example in section 4.6.2. While this reconfigu-

ration is possible with 6 modules assuming helper modules have sufficient torque to carry

only one mobile module at a time, larger single-file ring shapes are impossible to construct

without any scaffolding behavior. Easier reconfigurations include ‘line-to-box’ types which

are possible for any number of modules owing to their solid, non-sparse geometries.

164 CHAPTER 4. CENTRALIZED PLANNING FOR 3R-TYPE MODULES

(a) Line (b) Ring (c) Box (d) Superbotman (e) Sidestack

Figure 4.23: Shapes chosen for reconfiguration examples

4.6.2 Examples

This section examines several CSRP-directed reconfigurations of simulated Superbot mod-

ules. The examples discussed are also available in video format30 located in the attached

DVD. Selected shapes for this section are a line, ring, box, stick figure (‘Superbotman’) and

a side-stack seen in Fig. 4.23. Reconfigurations examples are been between the following

shapes (tested in both directions):

• Line←→ Ring

• Line←→ Box

• Line←→ Superbotman

• Line←→ Sidestack

Perhaps the most interesting reconfiguration is the line-to-ring example seen in Fig.

4.24. In this example the CSRP used 4 iterations of Global Search resulting in 4 successive

module relocations shown in Figs. 4.24b, 4.24h, 4.24i and 4.24j. Figs. 4.24b through

4.24h show seven snapshots of the second relocation (the mobilized module is the bottom-

left module in Fig. 4.24b) involving cooperative behavior. The running value of ’steps’

30an index of all multimedia is located in appendix A

4.6. EVALUATION 165

is the total states transitioned through robot’s state space. This includes regular atomic

actions taken from the initial reconfiguration to that have physical significance such as

movements and connections, and also actions dedicated to planner protocol such as helper-

engagement31. In this particular relocation, the CSRP’s found it was optimal to use a helper

module to pick up the mobile module (step 20), reorient it (steps 21-29), and place the

mobile module back down in its original location (step 30). Interestingly the CSRP found

this technique to be optimal because from step 34 it was able to re-grip the mobile module

in such a way they were both in their correct configurations (stipulated by Global Search)

by step 38. The second half of the ring, which is symmetric to the first half created by step

38, did not need to follow an analogous action sequence. This is because the CSRP was

then able to take advantage of the fact the first half was already built, and so from step 55

onwards, a helper module could place the final mobile module (top module in Fig. 4.24i)

onto the existing first half of the ring for attachment and immediately release and re-grip

without violating global connectivity.

The CSRP is not yet able to guarantee reverse-reconfigurations. In practice a robot can

always log its actions and perform them in reverse order to return to a pre-existing state,

however in the absence of a log; CSRP will sometimes choose a different return strategy.

The problem with this is some shape changes are only one-way. For instance the CSRP

can direct a robot to transform from the line shape into a ring but fails when attempting

to reconfigure the ring shape back into a line. This shortcoming is due to Global Search’s

selection of the ‘wrong’ module to mobilize on the return journey. Instead of mobilizing

31when a mobile modules calls upon a helper-related action, the CSRP must be able to distinguish which
helper module the mobile module is referring to. This takes place with the use of engagement-actions out-
lined previously in sec. 4.5.6. These actions are purely in software and because they impose no physical
ramifications to a robots the ‘steps’ should not be considered as a metric for comparison with other planners
but nevertheless indicate the path distance through state space traversed by the robot

166 CHAPTER 4. CENTRALIZED PLANNING FOR 3R-TYPE MODULES

(a) step 0 (b) step 15 (c) step 20

(d) step 23 (e) step 29 (f) step 30

(g) step 34 (h) step 38 (i) step 55

(j) step 65

Figure 4.24: Reconfiguration example: Line-to-Ring

4.6. EVALUATION 167

(a) step 0: first mobile module is
selected

(b) step 11: first mobile module
has relocated

(c) step 11: second mobile mod-
ule is selected

Figure 4.25: Failed reconfiguration example: Ring-to-Line

the last mobile module in the previous example (Fig. 4.24) to retrace its steps it mobilizes

the first (lighter colored module Fig. 4.25a), leaving the ring structure three-quarters intact

by Fig. 4.25b (Modules chosen to become mobilized are those which are (a) not in a goal

position yet and (b) can safely detach without violating global connectivity). The sole

choice of which module to mobilize now by Global Search is the lighter colored module

in Fig. 4.25c. CSRP soon returns a fail at this point this module cannot traverse leftwards,

even with coordinated help from any one other module, where Global Search attempts to

reconstruct the line.

Complexity of reconfigurations varies widely with the shapes to be reconfigured, and is

often anti-intuitive. The configuration between a line to a sidestack, both one-dimensional

shapes, has at least a threefold execution time over all other reconfigurations from a line.

Planner performance statistics for each example is recorded in tables 4.2 and 4.3 for com-

parison. Performance parameters included:

Execution Time: seconds CSRP took to execute on a 2GHz laptop

Memory Required: the maximum amount of memory used during runtime

Superstates (max): the maximum number of superstates nodes expanded by Local Search

during an iteration of Global Search

168 CHAPTER 4. CENTRALIZED PLANNING FOR 3R-TYPE MODULES

(a) step 0 (b) step 6 (c) step 8 (d) step 26-27

(e) step 27-28 (f) step 30-31 (g) step 43-44 (h) step 46

(i) step 48 (j) step 56-57 (k) step 58-59 (l) step 63

(m) step 66 (n) step 76 (o) step 78 (p) step 83

Figure 4.26: Reconfiguration example: Line-to-Box

4.6. EVALUATION 169

(a) step 0 (b) step 5-6 (c) step 8 (d) step 19

(e) step 22 (f) step 23 (g) step 24 (h) step 28

(i) step 34 (j) step 42 (k) step 49 (l) step 52

(m) step 60 (n) step 82 (o) step 100 (p) step 107

Figure 4.27: Reconfiguration example: Line-to-Superbotman

170 CHAPTER 4. CENTRALIZED PLANNING FOR 3R-TYPE MODULES

(a) step 0 (b) step 7 (c) step 16 (d) step 17-18

(e) step 36 (f) step 46 (g) step 58 (h) step 62

(i) step 66 (j) step 67 (k) step 71 (l) step 74

(m) step 75 (n) step 76 (o) step 95 (p) step 101

Figure 4.28: Reconfiguration example: Line-to-Sidestack (Part 1 of 2)

4.6. EVALUATION 171

(a) step 104 (b) step 105 (c) step 107 (d) step 113

(e) step 116 (f) step 124 (g) step 127 (h) step 132

(i) step 139 (j) step 140 (k) step 153 (l) step 156

(m) step 160-161 (n) step 170 (o) step 174 (p) step 179

Figure 4.29: Reconfiguration example: Line-to-Sidestack (Part 2 of 2)

172 CHAPTER 4. CENTRALIZED PLANNING FOR 3R-TYPE MODULES

Superstates (total): the total number of superstates nodes expanded by Local Search

Actions (connections): total number of connector-based actions performed

Actions (unaided motion): total number of locomotion actions performed by a mobile

module

Actions (helper motion): total number of locomotion actions performed by a helper mod-

ule

Actions (total): sum total of the above three action types

Max Search Depth: the maximum breadth first search depth by Local Search during an

iteration of Global Search

Max Helpers: the maximum number of modules classed as helpers by Global Search dur-

ing an iteration of Global Search

Table 4.2: Reconfiguration Statistics Compiled for CSRP Examples of 6 modules

Reconfiguration Line to
Ring

Line to
Box

Line to Su-
perbotman

Line to
SideStack

Execution Time (s) 9.93 21.33 13.17 64.12
Memory Required (MB) 4.68 12.06 6.93 12.19
Superstates (max) 10,327 42,716 17,519 87,365
Superstates (total) 36,680 88,472 45,022 263,148
Actions (connections) 15 16 24 39
Actions (unaided motion) 14 32 52 76
Actions (helper motion) 30 26 22 46
Actions (total) 59 74 98 161
Max Search Depth 23 30 58 39
Max Helpers 2 10 4 10

The reason for prolonged executions of reconfigurations involving the sidestack shape

is due the higher number of modules designated as helpers. As tables 4.2 and 4.3 record,

4.6. EVALUATION 173

Table 4.3: Reconfiguration Statistics Compiled for Reversed CSRP Examples of 6 modules

Reconfiguration Ring to
Line

Box to
Line

Superbotman
to Line

SideStack
to Line

Execution Time (s) 11.34 26.31 50.51
Memory Required (MB) 12.22 8.09 12.19
Superstates (max) 22,738 138,409 90,118
Superstates (total) 45,431 154,997 255,258
Actions (connections) failed 17 16 40
Actions (unaided motion) 34 36 80
Actions (helper motion) 24 20 42
Actions (total) 75 72 162
Max Search Depth 29 38 40
Max Helpers 10 5 10

this reconfiguration had 10 helper modules32 during a relocation. As mentioned; helper

modules increase the size of the searchable state network significantly, a fact which is sup-

ported by the many superstates expanded during the search for sidestack’s reconfigurable

solution. Nevertheless, reconfigurations involving the box shape also had 10 helpers dur-

ing an iteration of Global Search (module relocation) and they executed relatively faster.

This discrepancy results from the different placements of helper modules about any mobile

module, characterized by the initial & goal shapes chosen. As seen in Fig. 4.26 the box

example involves four relocations and each time the mobilized module is not required to

move far. This means as Local Search (which is a BFS-based), spreads outwards through

the large state space (which is similar in size to that of sidestack’s) it discovers the goal state

(to relocate the module) relatively early. This fact is supported by the values of ‘Maximum

Search Depth’ in each box/sidestack example (tables 4.2 and 4.3) which are of 30/39 and

29/40 respectively. Local Search in the sidestack example is undeniably searching deeper

before it finds each goal state. Figures 4.28 and 4.29 shows why sidestack-reconfigurations

32there are only 6 modules total, but 5 of these modules are double-helpers

174 CHAPTER 4. CENTRALIZED PLANNING FOR 3R-TYPE MODULES

(a) step 0 (b) step 25 (c) step 45 (d) step 72

Figure 4.30: Successive relocations: Line-to-Sidestack, 4 modules

involve deeper searching. The only choice of modules Global Search has for mobilizing is

the bottom-left module shown in the sub-figure of each new iteration33. The goal location

of each successive mobilized module to traverse to the rightmost vacancy of the sidestack

by virtue of the user-inputted shape. Therefore every mobilized module is traversing from

end-to-end of the robot, and so starting/goal states Local Search attempts to link are also

approximately located at opposite ends of the state space. Thus the CSRP is essentially

searching the entire state network for every iteration of Global Search. These state network

are usually very large in size at well (one recorded as 90,118+ states) because every mod-

ule added to the sidestack is classed a double-helper for all subsequent iterations of Global

Search34. Thus the sidestack-reconfigurations result in the expansion of many more states

that other examples and thus higher execution times.

CSRP’s time complexity is quadratically polynomial to the number of modules in the

system. To verify this, a series of line-to-sidestack simulations were conducted (results

in table 4.4) varying the initial amount of modules from 4 to 10. Figure 4.30 show the 4-

module case, and figures 4.28 & 4.28 show the 6-module case. As the number of modules is

varied, the number of states that needs to be expanded in the search (which is proportional
33approx. step 0, 36, 76, 116, 140. Figure 4.30 shows successive figures of each new iteration for the

4-module line-to-sidestack reconfiguration
34this is because all bipartite modules in a sidestack have the ability to designate either of their parts as the

‘base’ or ‘end’ part of the helper module. Each base part choice will always keep the robot globally connected

4.6. EVALUATION 175

Table 4.4: Reconfigurations: Line to Sidestack

Modules 4 5 6 7 8 9 10

Execution Time (s) 23.03 38.34 57.76 81.56 105.6 137.9 167.1
Memory Required (MB) 7.79 9.99 12.28 14.39 16.70 19.16 21.43
SuperStates (Max) 52,177 70,211 88,008 104,213 121,991 140,537 157,849
SuperStates (Total) 102,084 172,412 263,343 370,347 496,490 645,600 808,273
Actions (connections) 16 26 39 55 74 96 121
Actions (unaided motion) 24 48 76 112 152 200 252
Actions (helper motion) 26 34 46 58 72 84 98
Actions (total) 66 108 161 225 298 380 471
Max Search Depth 26 33 39 45 51 57 63
Max Helpers 6 8 10 12 14 16 18

Figure 4.31: Sequence of line-to-sidestack reconfigurations showing CSRP’s quadratic re-
lationship between execution time and number of modules present

176 CHAPTER 4. CENTRALIZED PLANNING FOR 3R-TYPE MODULES

to execution time) grows quadratically. This is due to the serial nature of the CSRP; the

addition of each module both enlarges the state space and is also one more module to

relocate. The combination of these two factors forms the quadratic relationship of states

needing to be searched. To see this, figure 4.31 shows how the number of modules for each

sidestack experiment is linearly related (with a high R2 value) to the square root of their

execution times.

4.7 Discussion

The CSRP has shown to be able to reconfigure a 3R-based SRR between arbitrary shapes,

though not all. It directs the serial motion of modules which does not make for a scalable

SRP though it does simplify planning. Without the added complexity of parallelization of

module movements and decentralized computing (like the DSRP and most SRPs reviewed)

other aspects of planning could be focussed on. These aspects include the state represen-

tations of a module, the construction of state networks and the navigation functions used

throughout them, and the coordination between a mobile module and a helper module. The

success of these planning elements in isolation provides a firm prototype of the decentral-

ized DSRP discussed next chapter. Nevertheless there still remain areas of the CSRP which

can be improved on.

Completeness remains a difficult challenge, and while the CSRP has not yet achieved

it, neither has any other SRP. For instance, chapter 3 SRP survey showed the Fracta plan-

ner could get stuck in ‘reconfigurable stalemates’. The MTRAN planner restricted itself to

metamodules and thus is restricted to a subset of possible reconfigurations. The Claytron-

ics planner can fail in reconfiguring between highly concave shapes, and Million Module

4.7. DISCUSSION 177

March can fail in forming shapes with internal cavities. Graph Signature is possibly com-

plete given infinite time due to its method of simulated annealing which could eventually

explore every reconfigurable option, but in practice is not correct either.

Proving completeness still remains a difficult, if not impossible task. In the author’s

view; proving completeness is tightly coupled with the challenge of developing a complete

planner itself, and so the development of the first complete SRP will most probably precede

the discovery of such a proof. It is hoped that future work on the CSRP will result in a

general and complete planner, even if this is not provable. To be general and complete, a

planner may be able to reconfigure between shapes with certain types of module but not

others, owing to module design and not planner incapability. Such a property could be

called ‘mechanism completeness’, whereby the planner will find a reconfigurable solution

if one exists for such specific module the robot is composed of.

Reversibility is a desirable characteristic for planners and remains a challenge for the

CSRP to achieve. Without regard to robot application, the property of reversibility is char-

acteristic, though not necessarily indicative of; a planner choosing optimal reconfiguration

paths because of the consistency of its decision making (this assumes all module actions

are physically reversible). To fix this, Global Search’s method of selected the ‘next best

suited’ mobile module to relocate needs to be changed from being based on a absolute co-

ordinate system as well as the robot’s current configuration to being based on exclusively

the robot’s current configuration only. In this way the CSRP will use the same sequence

of actions to reconfigure from one shape to another and then back again because each time

Global Search will make the same decisions for the same reasons it did before. The only ex-

ception would be for symmetric structures where the planner must make a choices between

178 CHAPTER 4. CENTRALIZED PLANNING FOR 3R-TYPE MODULES

two equally desirable options, however even if it took the ‘wrong’ option the reconfigu-

ration is till guaranteed to proceed without breaking as it would only mirror its previous

reconfiguration steps (by virtue of the structure’s symmetry). The property of reversibility

can also be used to disprove a planner’s completeness property; if all module actions are

physically reversible and a planner is not reversible it is therefore neither complete.

The correctness of the CSRP is a promising property. Not every SRP in the literature

has this property, which this thesis defines as; a sequence of actions which successfully

transform an SRR into the given goal shape. The Fracta planner for instance could acci-

dentally reconfigure into shapes than the intended goal configuration due to the method of

encoding configurations which did not guarantee uniqueness to the encoded configuration.

The Claytronics planner also suffered some global disconnections during experimentations.

The CSRP on the other hand is correct; it always predicts disastrous events such as global

disconnections and potential collisions.

Chapter 5

Decentralized Planning for 3R-Type

Modules

This chapter discusses the Decentralized Self Reconfiguring Planner (DSRP) of this the-

sis, its design elements and experimentations. This planner incorporates the same design

structure as the centralized version (CSRP) described in the preceding chapter, though its

implementation is different in order to break up the algorithm for distributed program-

ming. Nevertheless it is recommended that the reader have read the previous chapter on the

CSRP design beforehand, as routines such as Transition Model (sec. 4.5.6 - 4.5.8) have not

changed and so not re-discussed here. Testing of the DSRP is with a Java simulator, the

next step is to use the ‘hardware in the loop’ simulator discussed in the future work after

translating into C++. Message passing is a major consideration in the decentralized plan-

ner as there can be significant time delays between module-to-module communications,

and so even though communication is vital it needs to be kept to a minimum as much as

possible.

179

180 CHAPTER 5. DECENTRALIZED PLANNING FOR 3R-TYPE MODULES

Table 5.1: Comparison of CSRP and DSRP

Planner CSRP DSRP

Module Type Superbot & MTRAN Superbot & MTRAN
Lattice cubic (3D) cubic (3D)
Max. modules helper aids 1 0
Process deterministic deterministic0

Module Composition homogeneous homogeneous
Computing Architecture centralized decentralized
Module Movements serial parallel
Metamodules? modules modules
Simultaneous Actuations? simultaneous not simultaneous
Time Complexity / module quadratic sub-linear
Space Complexity / module sub-linear linear

The DSRP is a much improved design over the CSRP (table 5.1). The DSRP is not

only decentralized, which is the natural computing architecture of modular robots, it can

also plan for parallel motions of modules. This is important for the fast reconfigurations

of robots and also for scalability; enabling large SRRs to reconfigure in reasonable time

periods. Time complexity is sub-linearly proportional to the number of modules1 which is

a vast improvement over the CSRP. Though the DSRP is not yet finalized (helper classes are

yet to be re-implemented from the CSRP), all significant challenges faced by decentralizing

(including message passing) and parallelizing the CSRP have been accomplished.

0the DSRP is technically framework stochastic; asynchronous threading results in different reconfigura-
tions for the same initial condition if run several times, but it is not algorithmically stochastic because it does
not depend on any random number generator to operate like Claytronics, Graph Signature etc. do

1It is in fact of order O(d + C) where d is the diameter of the module cluster and C is a large constant.
This is sub-linear in all cases except for those involving a single file line configuration, which is the only
scenario the DSRP executes in linear time

5.1. ALGORITHM 181

5.1 Algorithm

The DSRP runs as a single process but with multiple threads, one thread for each module.

This changes the implementation of the Local Search routine discussed in section 4.5.5.

This is because the CSRP relies on a single centralized lookup table that describes the

global state of the robot. The principal reason for decentralization it to share the workload

and increase robot robustness such that no one module is special or critical to the robot’s

operation. Therefore no module can be solely responsible of storing globalized information

of the robot, as it forgoes these reasons behind decentralization and additionally such a

module would ultimately become a bottleneck for the entire performance of the system.

Instead all globalized information that exists in the CSRP needs to be distributed across the

memory banks of all modules in the system. Additionally it is preferred that information

always be shared in such a way that if any module malfunctions or breaks, updating any

such data structure requires little message passing and thus not time expensive.

5.1.1 Local Search

Local Search requires the building of a globalized state-network to support the use of a

navigation function to direct the motion of mobilized modules (sec. 4.5.5). In DSRP

implementation each structural module is responsible for computing and storing a portion

of the total state network in their own memory, called their Local State Network (LSN).

The LSN of a structural module is defined by all states that require physical connection to

that structural module. Because this is a set number (up to 648 states for static modules

and up to 9510 states for helper modules) per module, memory requirements grow linearly

with every module added, but as each module also supplies more memory when added the

robot’s size will never be limited by memory constraints and a global state network can be

182 CHAPTER 5. DECENTRALIZED PLANNING FOR 3R-TYPE MODULES

build to an unlimited size. As additional structural modules are added to the robot system,

each will take responsibility for representing the states in their own vicinity, i.e. the states

added to the global state network because of their presence.

Each structural modules independently builds its own LSN in the same way outlined in

the Local Search algorithm 4.4 of section 4.5.5, however are restricted to the set of states

that require physical connection to the structural module. The LSN is first populated with

all states that a mobile module can possible exist in around the structural module and then

linked up according to which actions are valid at any particular state using the Transition

Model (sec. 4.5.6 - 4.5.7). Transition Model’s implementation does not change for the

DSRP because none of its functions require information of the global state, only the local

state and actions of modules. Thus every module can store their own copy of Transition

Model (it is only 93.8kB), because it does not change once compiled for a certain module

type.

Once all structural modules have completed building their own LSNs (all computed in

parallel, thus an efficient constant-time exercise), the last task before the robot has a glob-

alized state network is to link the local state networks together forming a single continuous

global network. This is needed for a navigation function to operate on, assigning values of

desirability to different states directing the motion of mobile modules. In the DSRP case

this process is much faster2 owing to the large degree of parallelization; each module’s

processor updates the values of its own states. To link LSNs together, the state-action pairs

that transition to states that belong to another module’s local state network (called cousin

states) must be identified. This is relatively easy; when a module is linking up its own LSN

2depending on the configuration of the robot. Execution time can be at most linear with the number of
modules as it always is for CSRP, if the robot in the DSRP case is configured in a single file line shape,
however for every other configuration it will have sub-linear execution time

5.1. ALGORITHM 183

(a) Three structural modules connected in a line configu-
ration and one mobile module; the lighter colored leftmost
module

(b) State network

Figure 5.1: Visual aid of the decentralized organization of the network or states

(after it has populated it with possible states) can checks that taking a particular action from

a particular state does results in a state that does not exist in its own LSN, it can safely as-

sume the state must exist in at least one other module’s LSN3. However a communications

process between modules is required to determine which other module the transitional state

belongs to. When this is found; the LSN of either module link via the action-link that exists

between these two states.

A simplified visual of the structure of linked LSN’s is shown in figure 5.1, which shows

a state network (Fig. 5.1b) based on the robot configuration of figure 5.1a. Each LSN

is represented by a collection of states (orange circles) belonging to a particular module

3This assumption is always valid on the condition that all other modules have finished populating their
own LSNs, as a Superbot module can never take an action (a complete list is located table 4.1) that would
result in a state not of the global state network because there exists no such action that disconnects both
module parts. So if the module is always connected to at least one structural module’s connector then it must
exist in at least that structural module’s LSN

184 CHAPTER 5. DECENTRALIZED PLANNING FOR 3R-TYPE MODULES

(yellow background). States within a LSN are interlinked (thin black lines), and LSNs are

linked to each other in some instances (thick black arrows). These links are the actions a

module could perform in any one state. There is often multiple actions a module could take

in any one state such as moving left, right, up or down the action-arrows of any state (circle)

in Fig. 5.1b. The leftmost module in Fig. 5.1a does not have a LSN because it is has been

mobilized, it will be taking advantage of the LSNs structural modules have computed to

make decisions about how to move.

To build these inter-module links (thick arrows), a module is programmed according

to algorithm 5.1 which initiates inter-module communications if a transitional state does

not exist in a module’s own LSN. It may know the state exists somewhere, but not until it

communicates with surrounding modules will it know which module it exists in and thus

which LSN is links to. As the Transition function (sec. 4.5.6) will return a full description

of the state in question, the module will know where the state will be located4 and so it

can send a message to a connected structural module closet to that direction which would

be most likely to have that state. If it doesn’t it can relay the message to module’s further

out, capped by a maximum search depth. Each module that receives a message concerning

the state will evaluate to message and return an ‘affirmative’ message including its identi-

fication number. In fact up to three modules can send back such reply because they states

can overlap the domains of structural modules in cases of concavities discussed later in

section 5.1.1. Upon return of a reply message, inter-module action links are noted in both

modules because all 3R-module actions are reversible, so validating a transition in one di-

rection also validates it in the other. The linking of LSNs is time expensive (due to multiple

message passing between modules), though once built can be re-used indefinitely until a
4in fact it will be located exactly where it was before the action; as only connector-actions can change

transition a state from one module to another and connector-actions never move modules

5.1. ALGORITHM 185

local change occurs to one of these structural modules, such as it mobilizing.

Algorithm 5.1 Decentralized state network constructor
1: populate local states of Module
2: for each State/Action pair do
3: (State) NeighborState = TransitionModel(State, Action)
4: if NeighborState does not belong to Module then
5: MESSAGE(to a connected module in NeighborState’s direction): “does Neigh-

borState belong to your local set?”
6: for each reply of ‘yes’ by AnotherModule do
7: record NeighborState as valid state on a different module; AnotherModule
8: end for
9: if no replies then

10: FAIL: “a valid state does not exist anywhere yet. This means other modules
have not yet finished completing their own LSNs”

11: end if
12: end if
13: end for

However a problem with that arises in multiple reply messages is the nature of the

network changes from the CSRP case of only one-to-one links exiting to many-to-many

links. This is because the same physical state can exist in the domain of multiple structural

modules, so a mobile module must choose which state representation under which module’s

domain it should transition to. This is discussed in sec. 5.1.1.

When the global state-network is finally constructed, a navigation function borrowed

from dynamic programming (sec. 3.2.3) is able to spread through it designating values

of desirability to each state for mobile modules to consider. Global Search selects a goal

state for one or multiple mobile modules to move towards, the module that houses the goal

state (the ‘goal module’) in its LSN will propagate the navigation function outwards just as

CSRP does for the entire state space, outlined in algorithm 4.4 in section 4.5.5. The DSRP’s

186 CHAPTER 5. DECENTRALIZED PLANNING FOR 3R-TYPE MODULES

Figure 5.2: Navigation function spread throughout a DSRP state network

navigation propagates beyond the boundaries of the ‘goal module’ whenever any state in

its LSN is updated (algorithm 4.4 line 14) by also notifying the cousin module (if it has one

- it will know if it does have one because of the presence of an inter-module link) of the

update. It does this as part of the normal expanding of state-nodes, examining the children

nodes to determine if they require updating also. In the DSRP case it just so happens one

of these nodes can be a cousin node (a linked state on a different module). Module’s send

these messages in the form of offering what could be a potential value of the cousin state

in a cousin module. If such a value is better than what that cousin state’s value currently

is, it will update, and the navigation function will spread throughout that new module as

well. The end results in a propagation of the navigation function that resembles the final

outcome of the CSRP navigation spread as seen in Fig. 5.2.

Concavities

Concavities are lattice-cells over a robot’s topological surface that are adjacent to two or

more cells occupied by structural modules. Concavities can exist over the surface of a robot

as exampled by the ‘missing’ cube in figure 5.3a. They lead to the undesirable effect of

states being registered in the local space of more than one structural module, such as the

red bipartite module position in Fig. 5.3b. In this case the connector arrangement of a

Superbot module is such that a state in this red positioning of a module could be connected

5.1. ALGORITHM 187

(a) A concavity cell which is adjacent to 3 struc-
tural module parts

(b) A mobile module (red) with one part located
in the cavity

Figure 5.3: Concavity

up to 2 of the structural modules of Fig. 5.3a colored yellow. As inter-module communi-

cation is restricted, both structural modules will not be aware they share a common state

with each other and will both unnecessarily double up work by computing the same state

parameters required by an instance of the State class. The benefit of a centralized state

network is all states are stored in one location so attempts to re-instantiate the same state

area easily recognized by checking the single state network to see if it exists yet. This is

not a massive computational inefficiency however, the proportion of doubled-up states to

total states present over the shape of Fig. 5.3a is only 2.21%5.

5Proof: As mentioned in sec. 4.3 there are 108 states for every connectable face assuming no other
modules exist on the other side of the plane made by the connecting face. All faces that are not part of the
concavity, of which there are 4 + 4+ 4+ 3+ 3+ 3 = 21, conform to this. For each of the 3 faces within the
concavity, each is able to support one module position that is aligns parallel with the face (12 states) and two
positionings in each of the other Cartesian direction (24 states each) that align the module perpendicularly
to the connectable face. 21 × 108 + 3 × (12 + 24 + 24) = 2448 states in the system total. The number of
doubly connected states; 3 out of the 6 possible part-states of the part inside the concavity in Fig. 5.3a will
be double connected. This red positioning could be aligned in 3 directions to fill this cavity (X, Y or Z) and
each time, there are 6 possible part-states the non-connected part can be in for each of these positionings.
Therefore there are 3× 3× 6 = 54 doubly connected states possible. The proportion is 54/2448 ≈ 2.21%

188 CHAPTER 5. DECENTRALIZED PLANNING FOR 3R-TYPE MODULES

Figure 5.4: Visual aid of the decentralized state network that has a concavity. Duplicated
states are colored blue and identified by numbers. Shown are two instances of state-1 and
two instances of state-2

The real complexity concavities add to the creation of a state network is changing the

one-to-one relationship state/actions pairs have with other states to many-to-many exam-

pled by Fig. 5.4. Because concavities allow certain states to belong to more than one

structural module’s LSN, state/action pairs can link to several states recorded in different

modules and vice versa. One option is to enforce a one-to-one linkage by only accepting

one of the reply messages in algorithm 5.1. However it is not obvious to distinguish which

module should be chosen from potentially three replies. If the choice is random, such as

accepting whichever module was the first to reply and then ignoring all subsequent replies,

then the state network can become fragmented which would eliminate the navigation func-

tion’s guarantee that all (directed) transition paths for mobile modules are optimal.

Fragmented means that some valid action-links have been ignored, links throughout

the state network can become unnecessarily sparse, and what may have been an optimal

reconfiguration path using some of these ignored action links is now rerouted by the planner

that is not aware they actually constitute valid actions. As a simple example consider figure

5.5. If a navigation function attempts to direct a mobile module from state-A to state-B,

5.1. ALGORITHM 189

(a) State network, with a po-
tentially ignorable action link-
age near state B (in bold)

(b) If the bold action link is not
ignored; modules find the truly
optimal path of 4 atomic actions
from state-A to state-B

(c) If the bold action link is ig-
nored; modules find the seem-
ingly optimal path of 10 atomic
actions from state-A to state-B

Figure 5.5: Example of state network fragmentation. Shown is a global state network
(module domains not shown)

it could choose the optimal path in Fig. 5.5b, or the seemingly optimal path in Fig. 5.5c

depending on the bold link in Fig. 5.5a is ignored or not.

A visual example of a state network around a concavity would resemble something like

figure 5.4. This is similar to the example seen in Fig. 5.1b except there are two additional

inter-module links due to overlapping states. The overlapping states (blue) are numbered

signifying where the same state exists on different modules (state-1 exists on module A and

B, state-2 exists on module B and C). Notice the complexity arises in the multiple paths

a planner can take; if the planner search is currently considering state-2 on module C and

takes the ‘left’ action it could either go to state-1 on module B or state-1 on module A.

In real terms this translates to does the search progress by sending a message to module

B or C? This DSRP sends messages to both. Although this incurs some duplication of

work it ensures concurrency between the state stored in each module (the values of the

state stored on each module always agree) preventing fragmentation of the global state

network. Happily, the intra-module links are always one-to-one and it is only the inter-

module links which can be many-to-many due to concavities. This means their occurrences

190 CHAPTER 5. DECENTRALIZED PLANNING FOR 3R-TYPE MODULES

in the state network are uncommon, because inter-module links are uncommon due to the

fact that only connection-action can initiate them (there are much more movement-actions

than connection-actions as seen in table 4.1) and only when in the direct proximity of

another structural module. The example seen before with a low 2.21% duplication of work

also agrees with this. And even though the duplication of work could have been higher if

the example robot structure in Fig. 5.3a had more concavities, there comes a limit as to

how many concavities can exist in a set region, so duplication of work is at least always

bounded by an upper threshold.

An alternative option for the DSRP could have been to scrap what caused the problem of

duplicated states in the first place; the way in which how the position of a module is defined

in the state representation as developed in the CSRP (sec. 4.3). The position of a module

state is defined as being the location of the connected part6 of the two-part module Superbot.

The advantage of this (discussed in sec. 4.2.1), as opposed to being defined by which

connector the connected part is connected to, is in the cases of concavities; what would

have been multiple states which are all functionally identical (if positions are defined by

connectors), is instead a single state (the planner assumes a module in that state will connect

to all connectors it’s adjacent to, not just one). This compresses the searchable space that

needs to be searched making the CSRP a more efficient planner. Ironically for the DSRP

case, the efficiency gain this produces is matched by the ‘duplicated computation’ (previous

paragraph) it also causes. However by changing the state position to being defined by

the connector is connects to (as Million Module March does; sec. 3.7), and states are

only considered to be connected to one other connector at a time (such that a module

doesn’t have two positions values under this new definition), then such a state is unique

6more specifically: the geometric center of the connected part

5.1. ALGORITHM 191

to that connector. The connector in turn belongs to the module it is a part of, and so that

structural module will have a set of states that are unique to it. For a state in a cavity; its

state representation must specify which connector it is connected to, and such a state will

belong to that connector’s module. Given the state can possible connect to several structural

modules in that location, no complexity occurs because each connection represents distinct

states.

A major disadvantage of the alternative option above is that is also foregoes the re-

duction of a state network’s dimensionality7 discussed in section 4.2.1. This stated that

the location definition over the connector definition gave rise to less connection-actions

needed in Transition Model’s repertoire. This reduction in dimensionality reduces search

time considerably and for this reason the location definition is kept along with the dupli-

cation of states that requires symmetric treatment to be kept concurrent (such as sending

messages to both module B or C discussed in the example before).

5.1.2 Message Passing

Communication between modules is frequently a limiting factor of planner performance in

any modular robots dues to significant time delays and low bandwidths. The hardware in

the loop used to test DSRP implementation is no exception. Inter-module communication

for the DSRP is via hardwired message passing. If a message needs to be sent between

modules not directly connected, it is relayed by interim modules. Messages are packeted

into 80 bytes blocks. To take advantage of this knowledge, wherever possible; messages

larger than 80 bytes are compresses into 80 bytes, and messages smaller than 80 bytes are

bundled with other small messages and sent as one. This is because the smallest message

7the maximum number of actions to choose from any one state-node

192 CHAPTER 5. DECENTRALIZED PLANNING FOR 3R-TYPE MODULES

that can be sent is 80 bytes, and considering it is expensive to do so, it should contain the

maximum amount of information possible.

Table 5.2: DSRP Message Types

Code Name Description

0 CousinState A module asking other modules it a cousin-state
exists in their LSNs

1 CousinStateReply A reply to CousinState message (only if state
exists in LSN)

2 QValueOffer Used when a state’s value changes, the state no-
tifies its cousin state

3 QValueEnquiry A mobile module enquiring about the value of
its cousin state

4 QValueEnquiryReply A reply to QValueEnquiry message (always
replies)

The DSRP supports five types of message listed in table 5.2. Message types 0 and 1

are used to link the LSNs of different modules in the construction of a global state network

as part of Local Search’s routine. Message type 2 is used as part of the dynamic program-

ming implementation to propagation a navigation function around the decentralized state

network. If a state updates on one module, it is able to notify a cousin state of this update

using message 2. When a state network is both constructed and a navigation function has

spread through it, then messages 3 and 4 can be used by module modules to enquire adja-

cent states as to their values. It uses these messages to check the values of each neighboring

state and picks the state with the highest value to next transition to. Each module stores

received messages in a circular buffer, and reads messages on a FIFO (First In First Out)

basis. Overflowing the buffer causes modules only throw warnings at this stage, but do not

terminate module operations as the messages will eventually get re-sent.

5.1. ALGORITHM 193

The DSRP design attempts to minimize all instances of message passing. One way to

do this is by compressing information to fit inside a single packet using hash codes. The

advantage of modular robots is that each can be programmed beforehand with the entire

DSRP planner including all hash code encoding/decoding routines, and so handshaking is

required on the DSRP level, the format of messages is always as expected. Encoding a state

is required when one module asks another module if a cousin-state exists in its LSN. An

example of encoding a state (algorithm B.1) is included in appendix B. It allows the DSRP

to take advantage of the fact that a 3R module can only assume 216 different states per

position and that this number is less than 255; the highest value of an unsigned byte. So by

hash encoding, all information included in a state except position is uniquely represented

by a single number 0 to 215, compressed into a single byte. If the robot is less than 128

modules, each Cartesian direction compresses into a single byte also, totaled 4 bytes per

state. A receiving module can decode a message to recreate original objects by a reversal

of this process. Algorithm B.2 shows the process of decoding an encoded state object.

5.1.3 Parallelization

Parallelization is the simultaneous movements of multiple surface-moving modules, which

the DSRP supports. To do this three planning components need inclusion/updating:

1. Global Search: Something similar to Million Module March (MMM) (sec. 3.7)

would be suitable, whereby certain modules selected have the ability to lock down

immediately surrounding modules to initiate movement without ‘traffic jam’ con-

flicts. These conflicts occur when two modules side by side are each able to become

mobile without violating global connectivity, but not both. In this instance Global

194 CHAPTER 5. DECENTRALIZED PLANNING FOR 3R-TYPE MODULES

Search needs to make a decisions about which should move, which MMM incor-

porates with one module locking the other (whichever was fast enough to send the

locking message first). So far the Global Search has not been implemented dynami-

cally, only hard-coded, so this is a matter for future work

2. Universal Navigation Function: The navigation function modules use to make

movement decisions needs to be universally accessible and applicable to all mobile

modules. As is, the CSRP implementation is not far off but the representation of the

goal needs to change from a single state somewhere to a region that can accommo-

date multiple modules. This can also warrant the continual updating of navigation

function values as some modules inevitably block the paths of others necessitating

the updates in order for modules to reroute. So far in this implementation, modules

will simply wait for modules in front to get out of the way

3. Collision Avoidance: A dynamic collision avoidance function needs to prevent

surface-moving modules from colliding into each other. This is a dynamic process

that prevents some modules from accessing certain parts of the state space at cer-

tain periods of time in contrast to the existing collision avoidance function which

assumes the every other module is always static for one surface-moving module’s

locomotion. This implementation is achieved also with the use of locks, whereby a

module can reserve certain sections of 3D space (lattice cells) for its exclusive use to

move through. At the conclusion of every successful atomic action a module takes,

it releases its locks over the space it moved through to allow other modules to pass

through as well. As this is a decentralized process, modules have to ask neighboring

modules if they have locks over a certain regions before moving

5.2. EVALUATION 195

5.2 Evaluation

This section evaluates the DSRP in terms of its performance and capabilities. It begins

with an analysis outlining performance properties and continues with examples of DSRP-

directed reconfigurations.

5.2.1 Analysis

Memory Usage

DSRP memory usage is linearly proportional with the amount of modules in a system.

This is because each module only needs to store a set amount of information; its LSN

(Local State Network) a set amount of messages, which are independent8 of the number

of modules in a cluster. This is a distinct advantage of the CSRP, as the DSRP-led robot

will never be limited in size due to exceeding memory capacity. As a modular robot grows

in size, memory requirements increase for both the DSRP and CSRP, however the DSRP

is the only planner who’s available memory capacity grows with it. As mentioned in sec.

4.6.1; the maximum amount of states a module can introduce to the global state network

is 19020, requiring 4.71MB. Thus each module’s in the DSRP needs to be able to reserve

4.71MB in its own memory to store its respective LSN. Messages are confined to 80 byte

packets, and most modules do not store beyond 20 messages before they have a chance

to process them. In addition each module needs a complete copy of the DSRP’s source

code totaling 170kB. Thus 5MB from each module would be adequate to store and run

the DSRP. This is not much, as mentioned in section 4.6.1; off-the-shelf SD cards are well

suited for module installation and range in the GB’s.

8they are only locally dependent on the placement of modules about them

196 CHAPTER 5. DECENTRALIZED PLANNING FOR 3R-TYPE MODULES

Execution Time

The execution time of the DSRP is much quicker on average that the CSRP. For all recon-

figurations except those involving single-file line configurations; the DSRP takes sub-linear

time (with the number of modules present) to solve reconfigurations.

Execution time complexity is: O(d+ C) where d is the diameter of the module cluster

and C is a large constant representing the time taken for each module to independently set

up their own LSN. This is a constant as LSNs can only be so large (19020 states maximum

if it is a double-helper9), and therefore upper-bounded. For a small number of modules

the constant C is the dominant factor, however for a large number of modules d becomes

the dominant factor of execution time. Thus best case reconfigurations include spherical

shapes which have the best d to number-of-modules ratio. Here,O(d) = O(3

√
6.n.vmodule

π
) =

O(3
√
n) where n is the total number of modules and vmodule is the volume of each module.

This is very much a sub-linear relationship. The other extreme, when all modules are

lined out end to end in a straight line, then O(d) = O(n), and execution time is linearly

proportional to the number of modules present.

Correctness & Completeness

Like CSRP, the DSRP is correct but not complete. It will not proceed with actions that

result in global disconnections, and modules are prevented from colliding with their ability

to lock down regions of 3D space they will move through, prohibiting other mobile modules

from entering as they move in parallel. The DSRP is not complete, in fact due to time

limitations the object class defining helper module movements cannot been ported and

9double helpers are those which can act as a helper from either side, i.e. each part is allowed to detach
and be the end part. As helpers contribute 9510 states each to the global state space, a double helper will
contribute 2× 9510 = 19020

5.2. EVALUATION 197

re-implemented from the CSRP yet so the DSRP’s reconfiguration options are limited.

Nevertheless it successfully shows that it is a faster and all round more efficient algorithm

than the CSRP in section 5.2.2. As mentioned in the previous chapter completeness is a

difficult if not impossible property to prove, nevertheless it is hoped that future work with

the DSRP will result in a planner that is complete.

5.2.2 Examples

This section demonstrates and compares DSRP-directed reconfigurations. Without the use

of helper modules, testing the DSRP has been confined to examining the locomotion of

mobile modules in ways that do not require coordinated motion. Fig. 5.6 shows one ex-

periment involving 4 mobile modules (lighter colored modules in Fig. 5.6a) moving from

an initial layout down a single file of static modules in parallel to bunch up at the oppo-

site end. This kind of simulation demonstrates performance gains of the DSRP over the

CSRP, allowing multiple mobile modules to share usage of global state networks instead

of rebuilding them after every module relocation. A comparison is then given between the

reconfiguration of Fig. 5.6 for both DSRP and CSRP planners in table 5.5, as well as a

look into the message passing required for the DSRP case in table 5.4. The translation of

the DSRP into C++ and the porting of it onto the hardware in the loop simulator has not

been completed, and so the DSRP has only been simulated at this point on a centralized

computer in Java. This is simulated with the use of a scheduler and a module class, cycling

between threads located in each module.

The simulation of Fig. 5.6 is replicated with varying numbers of mobile modules and

static modules with respective performance parameters listed in table 5.3. Fig. 5.6 repre-

sents experiment ‘D7’ which has 4 mobile modules moving along a line of 6 static modules

198 CHAPTER 5. DECENTRALIZED PLANNING FOR 3R-TYPE MODULES

(a) Initial configuration (b) Module modules in motion (c) Final configuration

Figure 5.6: Experiment D7

and the other experiments are conducted similarly. Performance parameters are;

Simulation Time (s): Total time to conduct the DSRP simulation

Avg. CPU Util. (s): (Average CPU Utilization) The average time spent in each module’s

thread

Avg. Memory (kB): (Average Memory) The average amount of memory each module used

States (total): The number of states in the global state network

Actions (connection): Total connection-type actions from all modules

Actions (motion): Total unaided motion-type actions from all modules

Actions (total): Total of all actions for all modules

Messages: Total messages count between all modules

The key result here is that as the number of mobile modules increases for any fixed

number of static modules, the average CPU utilization of modules does not increase sig-

nificantly. The reason it increases at all, is because mobile modules usually compute more

than static modules (as seen next in table 5.4) and thus bump up this average. As seen

5.2. EVALUATION 199

Table 5.3: DSRP Experiments

Experiment D1 D2 D3 D4 D5 D6

Mobile Modules 1 1 1 2 2 2
Static Modules 18 30 42 18 30 42

Simulation Time (s) 2.63 4.62 4.98 4.37 6.90 8.38
Avg. CPU Util. (s) 0.138 0.149 0.116 0.219 0.216 0.190
Avg. Memory (kB) 289.2 292.2 293.5 274.7 283.1 286.9
States (total) 7,992 13,176 18,360 7,992 13,176 18,360
Actions (connection) 35 59 83 70 118 166
Actions (motion) 73 121 169 146 242 338
Actions (total) 108 180 252 216 360 504
Messages 4,211 8,915 15,044 4,942 10,138 16,759

Experiment D7 D8 D9 D10 D11 D12 D13

Mobile Modules 4 4 4 4 6 6 6
Static Modules 6 18 30 42 18 30 42

Simulation Time (s) 2.08 7.39 10.24 15.52 10.18 15.14 21.24
Avg. CPU Util. (s) 0.208 0.336 0.301 0.337 0.424 0.421 0.443
Avg. Memory (kB) 193.1 249.8 266.4 274.4 228.9 251.6 263.0
States (total) 2,808 7,992 13,176 18,360 7,992 13,176 18,360
Actions (connection) 34 130 226 322 178 322 468
Actions (motion) 84 276 468 660 390 678 987
Actions (total) 118 406 694 982 568 1,000 1,455
Messages 1,966 6,214 12,265 19,762 8,092 14,108 22,952

200 CHAPTER 5. DECENTRALIZED PLANNING FOR 3R-TYPE MODULES

the average memory use is also fairly constant. The average rises slightly as the ratio of

static modules to mobile modules increases because mobile modules are not required to

compute a LSN (they use the LSNs of static module by enquiry), they only need to store

received messages. The total messages transmitted and received is contributed from both

static modules in the construction of the global state network and from mobile modules

navigating it. Both these contributions are linear with the number of modules, resulting in

a linear total. A similar relationship holds for the global state space size as well. As these

experiments operate on a line shaped configuration, this represents the worst case scenario

for the DSRP, resulting in these linear (not sub-linear) relationships.

Table 5.4 offers a closer examination of the message passing of a typical experiment

(D7) needed to support a DSRP reconfiguration. Module classes ‘M’ and ‘S’ signify mo-

bile and static, and the five message types either transmitted or received are detailed in table

5.2, section 5.1.2). One clear distinction between both modules types is the CPU utilization

of each. The average mobile module required 10 times the utilization than static modules

did. This is because once static modules have set up the global state network their job is

practically over; they only need to respond to mobile module queries. The mobile modules

on the other hand are continually determining their next choice of action, waiting on mes-

sage replies and preventing collisions. To prevent collisions the Collision Detection routine

(sec. 4.5.7) is called by the mobile module to compute the encroaching lattice-cells. It then

checks these cells with nearby modules to check if they are unlocked before proceeding

incurring further computation, all of which is time expensive.

The main form of messages are the CousinState/CousinStateReply types which modules

use to continually discover the presence of others in their local proximity. This is needed

both in the creation of a global state network and also avoid potential collisions. Static

5.2. EVALUATION 201

Table 5.4: Message Statistics from Experiment D7

Module ID 0 1 2 3 4 5 6 7 8 9
Module Class M M M M S S S S S S

CPU Utilization (ms) 503 420 468 419 56 20 51 20 98 30

Actions
Connections 10 10 7 7 0 0 0 0 0 0
Unaided motion 25 25 17 17 0 0 0 0 0 0
total 35 35 24 24 0 0 0 0 0 0

Messages Transmitted
CousinState 31 36 34 34 1 1 1 1 1 1
CousinStateReply 64 86 83 70 22 42 52 64 66 45
QValueOffer 0 0 0 0 72 121 121 121 118 38
QValueEnquiry 11 11 7 7 0 0 0 0 0 0
QValueEnquiryReply 0 0 0 0 2 4 6 8 12 4
total 106 133 124 111 97 168 180 194 197 88

Messages Received
CousinState 64 86 83 70 22 42 52 64 66 45
CousinStateReply 157 182 172 172 4 7 5 5 3 2
QValueOffer 0 0 0 0 49 121 121 121 110 69
QValueEnquiry 0 0 0 0 2 4 6 8 12 4
QValueEnquiryReply 11 11 7 7 0 0 0 0 0 0
total 232 279 262 249 77 174 184 198 191 120

202 CHAPTER 5. DECENTRALIZED PLANNING FOR 3R-TYPE MODULES

modules only ever need to send the message once whilst they or their neighboring static

modules are not mobilized because otherwise their local space does not change. This is with

the exception of mobile modules moving along beside them however a static module does

not need to be aware of their presence (besides when forming a connection) because their

computational role is simple to build the global state network. This is turn in independent

to where mobilized modules are currently located, they simple fill one of the many states

the global state network plans for. Some message type are not transmitted or received by

one of the module classes due to their nature. A QValueOffer type is only needed between

static module in state network creations, and QValueEnquiry are only ever sent by mobile

modules and only directly to static module to enquire the value of states within their LSN.

Table 5.5: DSRP and CSRP comparison

Experiment D3 D6 D13
Mobile Modules 1 2 6
Static Modules 42 42 42

Planner CSRP DSRP CSRP DSRP CSRP DSRP

Net CPU Use (s) 4.14 4.98 11.92 8.38 91.81 21.24
Net Memory Use (MB) 10.06 12.33 10.03 12.33 10.30 12.33
States (max) 14,989 18,360 14,934 18,360 15,344 18,360
States (total) 14,989 18,360 29,729 18,360 85,031 18,360
Actions (connection) 83 83 166 166 468 468
Actions (unaided motion) 169 169 338 338 987 987
Actions (helper motion) 0 0 0 0 0 0
Actions (total) 252 252 504 504 1,455 1,455

To compare DSRP performance against that of the CSRP, table 5.5 shows the results

of running experiments D6, D10 and D13 with both planners. As the DSRP does not

yet able to plan with helper modules, the helper class in the CSRP was disabled for fair

comparison. The equivalent action counts between planners indicate both decide on the

5.2. EVALUATION 203

same course of actions for reconfigurations. This shows that the decentralized state network

of DSRP is still able to produce optimal relocations of modules given CSRP does. In

the ‘D3’ experiment of a single mobile module, the CSRP performs marginally better.

This is because the CSRP is not forming a full state network like the DSRP is, it builds

outwards according to a BFS search until is find the goal state it is looking for. At this point

does not require further building as it will not be reused and the merits of the BFS search

guarantee the first found solution is optimal. However in experiment ‘D6’ DSRP becomes

the more efficient planner still constructed with 18,360 states. The CSRP on the other

builds one network to move the first module in serial which then becomes a static module

by the time the second module is mobilized. The state network it not reused because it

has changed by virtue of the previously mobile module becoming a static. Both these

networks are about 14,900 states each totaling in 29,729 states searched to reconfigure. By

experiment ‘D13’ with six module modules, this increases significantly again to 85,031

resulting in a much longer net CPU time of 91.8 seconds compared to that of the DSRP’s

21.24 seconds. The ‘net CPU use’ is the net total of threads execution time on the DSRP,

and is simply the single execution time in the CSRP’s case. For cases involving 2 or more

modules moving in parallel the DSRP will make better use of the robot’s computational

resources. Though what these simulations of the CSRP do not account for is the message

passing needed for a CSRP to operate on one module, directing all other modules. This

gross use of global message passing would slow down such an algorithms execution even

though its simulated time is shown to be superior than the DSRP in experiment ‘D3’. Since

most reconfigurations do involve multiple module relocations, DSRP will be a much faster

algorithm than CSRP most of the time. The ‘net Memory use’ is the maximum sum total

of memory required at any point by the planners in the building of state networks. The

204 CHAPTER 5. DECENTRALIZED PLANNING FOR 3R-TYPE MODULES

CSRP always uses less memory than the DSRP case because of the partial building of any

state network, the DSRP’s memory requirements as discussed before is upper bounded.

The DSRP only needs to reserve about 5MB on each module, and so the improvement of

execution time from a quadratic to an ‘at most linear’ relationship with the module count

significantly outweighs prospect of saving one or two megabytes on each module.

5.3 Discussion

The DSRP has shown to be a more suitable choice for a modular robot over the CSRP.

Its efficient reuse of state networks is the key for a faster execution time, and enabling

modules to move in parallel makes for faster robot reconfigurations. The CSRP serves

as a good prototype useful in simulation to test reconfiguration strategies but eventually

such a program needs to be installed onto a modular robot and in this case the DSRP is a

natural implementation to the robot’s distributed computer architecture. This not only takes

advantage of being able to run multiple threads on different microprocessors but also does

not require global broadcasting; messages are only transmitted between modules in close

proximity, minimizing communications delays.

The mobilized modules have shown to bear increased computational burdens over static

modules in a DSRP reconfiguration. This imbalance is inherent to the DSRP design so does

not necessarily pose a problem to be solved but nevertheless could be accommodated for.

Fully functional modular robots will need to share computational resources with various

tasks other than planning, including stability analysis, sensing, localization etc. Computa-

tional resources will no doubt need to be managed, and the most efficient way to manage the

DSRP will be to allocate the planning threads onboard mobilized module greater priority

5.3. DISCUSSION 205

than those onboard static modules, especially when those static modules are not connected

to any mobile modules. This would decrease delays for planning related messages and

provide for more rapid computation of reconfiguration solutions.

The DSRP compares well with other SRPs reviewed (chap. 3). For one, like the CSRP

it does not restrict SRR configurations to those of metamodules like the MTRAN planner

(sec. 3.5), which although simplifies planning, also reduces SRR versatility. The DSRP

is additionally deterministic (as is CSRP), enabling greater predictability than all SRPs

reviewed except MTRAN. Its decentralized, parallel & non-metamodule design is rivaled

only by Fracta (sec. 3.4) and its sub-linear order execution time is rivalled only by the

Million Module March (sec. 3.7). It does not however plan for heterogeneous composition

as Graph Signature does. The benefits of heterogeneous design (sec. 3.3.3) to SRR is a

worthwhile consideration in a SRP though was never part of the DSRP design goal. Given

that most of its routines are general (hardware independent), minimal re-implementation

is required to instantiate it to operation on different module hardware. Conclusively the

DSRP is a tractable, pragmatic SRP suitable for any Suerbot or MTRAN based SRR.

206 CHAPTER 5. DECENTRALIZED PLANNING FOR 3R-TYPE MODULES

Chapter 6

Conclusions

6.1 Summary of Work Completed

This paper has taken a novel approach to planning reconfigurations of modular robots in a

tractable way. A general understanding of previous self reconfiguration planners revealed

that those which were purpose-built for particular module designs can offer more efficient

reconfiguration strategies than generic planners that plan for metamodules. The downside

is such planners are limited to the modules they were designed for whereas generic planners

are portable. The contribution of this thesis has been towards generality; to break this trade

off and draw advantages of both types to build an efficient yet portable Self Reconfiguration

Planner (SRP).

Module designs are widely varied and survey papers have been published to collate and

compare these designs against each other yet research shows SRPs are also widely varied

though no such comparative survey yet exists. As part of the background research for this

thesis, to draw from the present state-of-the-art in planner design, this paper includes a

207

208 CHAPTER 6. CONCLUSIONS

survey of some of the most influential and original SRP algorithms.

An understanding of module representation is investigated with emphasis on exploiting

symmetries to reduce the search task as much as possible. This is extended to a cooperative

module representation that simplifies (provides an abstraction for) the planning process of

interdependent modules. The central design is based on hierarchical search to compute

close-to-optimal reconfigurations for an SRR. It is a decentralized program that supports

parallel motion of modules and executes in sub linear time with respect to the number of

modules composing a robot. The design is deterministic, which is not common amongst

SRPs due to the vastness of a robot’s configuration space, however the merits of reliability

and optimal module locomotion were deemed significant enough to be designed this way.

This is the first algorithm that plans general reconfigurations for surface moving mod-

ules whilst addressing module’s physical characteristics and constraints (its native kine-

matics). Most of the design is hardware independent, requiring minimal effort to port to

different module hardware. A fully generalized design is left for future work, and when

completed; would require no hand-coding of motion primitives, and thus would require

next-to-no effort to port between hardware systems. To validate the performance claim of

this thesis design, the ‘DSRP’ was written as a complete instantiate of the 3R module and

run in simulation. Results confirm it is both an efficient and scalable algorithm.

The DSRP is near completion, it further requires a helper-module class. Nevertheless

and in contrast to all SRPs reviewed; the DSRP is the first decentralized, non-metamodule

planner of arbitrary goal shapes to operate in real-time that can additionally direct the

parallel motion of modules. It is also the first general purpose reconfiguration planner for

the Superbot module.

6.2. IMPLICATIONS OF THESIS 209

6.2 Implications of Thesis

Groundwork laid by the DSRP is its high-level general methodology of constructing a

state space of modules which can be searched to solve reconfigurations. This methodol-

ogy is completely hardware-independent and can thus be applied to modules of any type.

Additionally all principals of implementation that are hardware-dependent, such as state

representation, state isomorphisms and the transition model can be applied to all modules

discussed in chapter 2 and those yet to be built. This contrasts all SRPs reviewed in back-

ground chapter 3 with the possible exception of Graph Signature. This progresses current

literature of SRPs to an almost-general solution. An approach to full generalization is dis-

cussed next section.

When the completed DSRP is coupled with static stability results from other team mem-

ber projects we will have the world’s first general-purpose 3R planner that can be directly

implemented in hardware. This will be a full solution to the problem of autonomous self

reconfigurations of a 3R-based SRR. At this point the team will additionally be able to ad-

dress the topic of SRR applications by direct experimentation. By combining UWB radar

attachments (another team member project) the robot will additionally be able to sense

its surroundings opening up many new and exciting experimentation opportunities of au-

tonomous operations.

The presentation of this paper including all concepts, descriptions and algorithms has

been presented with the intension that the reader could emulate the DSRP if desired. It is

the intention of this author that this approach can serve as a platform in which the design of

a fully general reconfiguration planner can be extended from. Such a general planner holds

large potential for the field of SRRs, able to solve reconfigurations of any lattice or hybrid

based robots efficiently.

210 CHAPTER 6. CONCLUSIONS

Figure 6.1: Hardware in the Loop Simulator

6.3 Future Work

6.3.1 Hardware Experiments

As part of the development of this thesis the author helped build the ‘hardware in the

loop’ simulator seen in Fig. 6.1, a fully distributed system that forms the next stage of

testing for the DSRP. The hardware simulator is a collection of STM32F microcontrollers

from STMicroelectronics, each microcontroller representing one SRR module. For testing

purposes it is essentially one step away from the real thing. It provides a realistic yet

controlled computing architecture to validate all computation and memory assumptions

made in computer simulation. The communication system is based on wireless ZigBee

setup developed in house [15], to replicate packeted module-module message passing. To

test the DSRP it first needs to be translated from Java in C++ to compile on the boards.

6.3. FUTURE WORK 211

6.3.2 Roombots

After successful testing on the ‘hardware in the loop’ simulator, the next stage it to install

the DSRP onto Roombot (sec. 2.3.6) modules manufactured by the ACFR’s collaborators

at EPFL, Switzerland. Similar to the Superbot modules, Roombots offer a higher amount

of isomorphisms and their uniform connector placements simplify planning significantly,

and are thus an ideal module type to begin proper testing with.

6.3.3 Full Generalization

Generalization of a planner is the capability to solve reconfigurations for any arbitrary mod-

ule design, not just for a particular one. Neither the CSRP or the DSRP have been fully

generalized yet, both compute reconfigurations for the 3R module type. To generalize these

planners, an automated means of developing the hard code in Transition Model (sec. 4.5.6

- 4.5.8) for any module design is required, as these are the only hardware dependent pieces

of code not written dynamically. Both the CSRP’s and DSRP’s Transition Model code are

exactly the same. So far the Collision Detection (sec. 4.5.7 routine is almost hardware

independent though does assume the modules conform to cubic lattice architectures, how-

ever Transition (sec. 4.5.6) and Translation (sec. 4.5.8) are mostly hard-coded. This means

the planner will operate for Superbot types modules, and also MTRAN type modules if

all action options that actuate the central axle are denied (an MTRAN is just like Superbot

except it does not have a central axle).

The challenge of generalization is complex and no planner has yet achieved it. To fully

generalized the DSRP a template class is proposed which module specification could be

entered into in such a way that would fully and uniquely describe a module’s functionality

212 CHAPTER 6. CONCLUSIONS

(geometry and kinematics). From here, all instances of hard code within Transition Model

need to be re-written as dynamic code that use only the information presented on the in-

putted template. With routines Collision Detection, Transition and Translation updated the

DSRP will be fully generalized, able to operate on any module hardware.

Appendix A

Index to Multimedia Extensions

Table A.1: Index to Multimedia Extensions

Ext. Type Filename Description

1 Video SingleLocomotion.wmv mobile module moves without
helper

2 Video CoordinatedLocomotion.wmv helper aids mobile module’s loco-
motion

3 Video LineToRing.wmv CSRP reconfiguration
4 Video LineToBox.wmv CSRP reconfiguration
5 Video LineToSuperbotman.wmv CSRP reconfiguration
6 Video LineToSidestack.wmv CSRP reconfiguration
7 Video RingToLine.wmv CSRP failed attempt
8 Video BoxToLine.wmv CSRP reconfiguration
9 Video SuperbotmanToLine.wmv CSRP reconfiguration
10 Video SidestackToLine.wmv CSRP reconfiguration
11 Video DSRPExperimentD7.wmv DSRP reconfiguration

213

214 APPENDIX A. INDEX TO MULTIMEDIA EXTENSIONS

Appendix B

Extra Routines

Algorithm B.1 Encode State
1: Input (State) state
2: Initialize code← 0
3: code = 108×((moduleDirectionSign+1)/2) // [-1,1]
4: +36×moduleDirection // [0,1,2]
5: +18×encodeAxisDirection(moduleDirection,connPartAxisDirn) // [0,1]
6: +9×encodeAxisDirection(moduleDirection,unconnPartAxisDirn) // [0,1]
7: +3×connectedPartRotationIndex // [0,1,2]
8: +1×unconnectedPartRotationIndex // [0,1,2]
9: return (byte) code

215

216 APPENDIX B. EXTRA ROUTINES

Algorithm B.2 Decode State
1: Input (byte) code
2: Initialize (State) state
3: state.moduleDirectionSign = 2× (code/108)− 1
4: code = remainder(code, 108)
5: state.moduleDirection = code/36
6: code = remainder(code, 36)
7: state.connPartAxisDirn = decodeAxisDirn(moduleDirection, (code/18))
8: code = remainder(code, 18)
9: state.unconnPartAxisDirn = decodeAxisDirn(moduleDirection, (code/9))

10: code = remainder(code, 9)
11: state.connectedPartPossibleVectorsIndex = code/3
12: code = remainder(code, 3)
13: state.unconnectedPartPossibleVectorsIndex = code
14: return (State) state

Glossary

Bipartite A module consisting of two parts, usually linked together by an axle

Chain (Module) A module architecture type that allows module configuration values
(position, direction, axle rotation etc.) to be continuous (not discrete)

Complete (Algorithm) An algorithmic property; if a solution exists, then the algorithm
always finds it

Complexity Cost analysis of a program’s execution. Time complexity refers to relation-
ship between execution time and the number of modules in a system, and space complexity
refers to the relationship between memory required and the number of modules in a sys-
tem. Complexity, when used as an isolated term is this report, refers to both time and space
complexity

Concavity A concavity is a lattice-cell that is adjacent to two or more non-module mod-
ules

Configuration (Module) The description of a module in 3D space including its: i) posi-
tion, ii) orientation and iii) rotation about its degrees of freedom

Configuration (Modular Cluster/Robot) A particular arrangement of connectivity be-
tween independent modules

Configuration Space (Modular Cluster/Robot) The set of unique configurations a mod-
ular cluster can assume

Connectivity Connectivity is the physical linkage of modules. Global connectivity refers
to a modular robot that is structurally a single piece by virtue of the various individual
connections linking composing modules. Global connectivity is a binary statement; a mod-
ular robot is either globally connected (one piece), or it is not (meaning it is in multiple
separated clusters)

Converter Module see Helper Module

217

218 APPENDIX B. EXTRA ROUTINES

Correct (Algorithm) An algorithmic property; if a algorithm finds a solution, then that
solution is always a correct solution

Cousin State When a state links to another state located within a different module’s LSN
(Local State Network), both states are referred to as cousin states

Degree of Freedom Means in which a module can alter its shape, usually an actuated
axles or hinges that rotate one part of the module relative to another part

Global connectivity see Connectivity

Grid see Lattice (Grid)

Hard Code A fixed coded object, such as a data or routine, stored in the program’s source
code. This object is final, and cannot be dynamically updated or automatically generated
by the program. Hard code often has limited use and is usually not desired over programs
that can automatically update the object to suit changing circumstances

Helper Module A module that will reconfigure itself to aid a surface-moving modules
move by picking it up at one location, and placing it down in another, without detaching
itself from the module cluster. All helper modules are structural modules

Hybrid (Module) A module design which can act as either a chain or lattice architecture
module

Lattice (Grid) A hypothetical framework in 3D space specifying regular polyhedral cell
locations packed together (e.g. honeycomb lattice of hexagon cells, or graph paper of
square cells)

Lattice (Module) A module architecture type that limits module configuration values
(position, direction, axle rotation etc.) to be discrete

Mobile Module see Surface Moving Module

Mobilized The event of a structural module changing its class into a mobile module

Module A robotic ‘building block’ of modular robots. Usually has at least 2 connect-
ing faces to be able to connect with other modules. May contain a power source(s), mi-
crochip(s), degree of freedom(s), sensor(s), etc. See sec.2.2 for details.

Module Cluster Multiple connected modules forming a single modular structure.

Monopartite A module consisting of one part

219

Navigation Function A function that assigns numeric values of desirability to different
states or connecting surfaces. Mobile modules can consider these values when greedily
deciding between which states to progress to as part of their informed locomotion between
two locations. Usually a higher value represents higher desirability, a goal location or state
is given a desirability of zero, and all surrounding states/connecting faces will have negative
values, the magnitude of which represents their action-distance to the goal.

Native Kinematics The kinematic abilities of a module specific to its design

Neighbor State (CSRP) If a module in a certain state was to take any action it will result
in another state. Both these states are referred to as neighbor states

Neighbor State (DSRP) When a state within a module’s LSN (Local State Network)
links to another state also within the same module’s LSN, both states are referred to as
neighbor states

Reconfiguration A transition between two configurations by a series of atomic move-
ments

Reconfiguration Planner Optimal algorithm that minimizes a measure of interest such
as the number of steps,time or power required to reach a final configuration

Searchable Space see State Space (Modular Cluster/Robot)

Space Complexity see Complexity

State (Module) A description of the functional state of a module. Often multiple module-
configurations can be in the same state being functionally (geometrically and kinemati-
cally) identical.

State (Modular Cluster/Robot) A set of configurations that are functionally (geometri-
cally and kinematically) identical

State Network A network of unique state-nodes. All states that exist in a module state
space exist in its state network as nodes which are interlinked by actions the module can
take. Valid actions a module can take result in a change of state of the module, thus such
an action provides a direct link between two state-nodes in a modules state network. A
state network can exist for just one mobile module to plan its movements via a navigation
function. It can also be used in the context of a cluster of modules and has the same
meaning, where each state represents a unique states of the modular cluster.

State Space (Modular Cluster/Robot) The set of unique states a modular cluster can
assume

220 APPENDIX B. EXTRA ROUTINES

Static Module A module that does not move at all (unless mobilized). Thus it is not
a mobile module nor a helper module, but part of the robot’s static structure of modules
remain in their positions. All static modules are structural modules

Strictly Decentralized A type of planning algorithm that restricts module-module com-
munication to only a few module lengths. This is distinct to non-strictly decentralized
planners (or just ‘decentralized planners’) which still execute in parallel as decentralized
algorithms do however also have the option of broadcasting information to any other mod-
ule in the modular cluster no matter how far away

Structural Module Either a helper module or a static module in a robot’s cluster. If a
module it not a mobile module then it must be a structural module.

Substate The elements of a state that concern just one of a bipartite module’s parts. Used
to represent the ‘state’ of one module part

Superstate A duel set of states that describe both a mobile-module and a helper-module

Surface Moving Module A mobilized module traveling over the surface of static modules
which form the bulk of a modular cluster

Thread A portion of a program that can run independently of and concurrently with other
portions of the program - [www.answers.com]

Time Complexity see Complexity

Bibliography

[1] M. Asadpour, A. Sproewitz, A. Billard, P. Dillenbourg, and A. Ijspeert, Graph signa-
ture for self-reconfiguration planning, IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS-2008), September 2008, pp. 863–869.

[2] M. Ashley-Rollman, M. De Rosa, S. Srinivasa, P. Pillai, S. Goldstein, and J. Camp-
bell, Declarative programming for modular robots, Workshop on Self-Reconfigurable
Robots/Systems and Applications at IROS ’07, October 2007.

[3] SD Card Association, Sd technology overview, http://www.sdcard.org/
developers/tech/, 2008, last visited 1 Nov. 2009.

[4] A. Barto and S. Mahadevan, Recent advances in hierarchical reinforcement learning,
Discrete Event Dynamic Systems 13 (2003), no. 1-2, 41–77.

[5] P. Bhat, J. Kuffner, S. Goldstein, and S. Srinivasa, Hierarchical motion planning for
self-reconfigurable modular robots, IEEE/RSJ International Conference on Intelligent
Robots and Systems, October 2006, pp. 886–891.

[6] CMU Biorobotics, Modular snake robots, www.modsnake.com, July 2009, last
visited 1 Nov. 2009.

[7] R. Braeunig, Planetary spacecraft, http://www.braeunig.us/space/
planet.htm, 2008, last visited 1 Nov. 2009.

[8] A. Castano, A. Behar, and P. Will, The conro modules for reconfigurable robots,
IEEE/ASME Transactions on Mechatronics, December 2002, Issue 4, pp. 403–409.

[9] G. Chirikjian, Kinematics of a metamorphic robotic system, IEEE Intl. Conf. on
Robotics and Automation, 1994, pp. 449–455.

[10] D. Christian, Maps of time: An introduction to big history, Univeristy of California
Press, Ltd, 2004.

221

http://www.sdcard.org/developers/tech/
http://www.sdcard.org/developers/tech/
www.modsnake.com
http://www.braeunig.us/space/planet.htm
http://www.braeunig.us/space/planet.htm

222 BIBLIOGRAPHY

[11] CMU, Claytronics group publications listed by year, http://www.cs.cmu.
edu/˜claytronics/publications/index.html, 2008, last accessed 25
Sept 2009.

[12] T. Dietterich, Hierarchical reinforcement learning with the maxq value function de-
composition, Journal of Artificial Intelligence Research 13 (1999), 227–303.

[13] S. Finch, Mathematical constants, vol. 94, Cambtidge University Press, 2003.

[14] R. Fitch and Z. Butler, Million module march: Scalable locomotion for large self-
reconfiguring robots, The International Journal of Robotics Research 27 (2008), no. 3-
4, 331–343.

[15] R. Fitch and R. Lal, Experiments with a zigbee wireless communication system for
self-reconfiguring modular robots, IEEE Int. Conf. on Robotics and Automation,
2009. ICRA ’09 (Kobe International Conference Center, Kobe, Japan), May 2009,
pp. 1947–1952.

[16] T. Fukuda and S. Nakagawa, Approach to the dynamically reconfigurable robotic sys-
tem, Journal of Intelligent and Robotic Systems 1 (1987), 55–72.

[17] , Dynamically reconfigurable robotic system, Robotics and Automation;
1988 IEEE International Conference (Philadelphia, PA, USA), vol. 3, April 1988,
pp. 1581–1586.

[18] T. Fukuda, S. Nakagawa, Y. Kawauchi, and M. Buss, Self organizing robots based on
cell structures - ckbot, Intelligent Robots; IEEE International Workshop, November
1988, pp. 145–150.

[19] S. Goldstein, J. Campbell, and T. Mowry, Programmable matter, IEEE Computer 38
(2005), no. 6, 99–101.

[20] AIST Intelligent Systems Institute Distributed System Design Group, Modular robot
takes its first step: Modular transformer (m-tran), http://staff.aist.go.
jp/e.yoshida/test/index-e.htm, April 2003, last visited 1 Nov. 2009.

[21] N. Inou, K. Minami, and M. Koseki, Group robots forming a mechanical structure-
development of slide motion mechanism and estimation of energy consumption of the
structural formation, IEEE International Symposium on Computational Intelligence
in Robotics and Automation (CIRA) (Kobe, Japan), July 2003, pp. 874–879.

[22] USC Information Sciences Institute, 1 km rolling track, http://www.isi.edu/
robots/media-superbot.html, June 2007, last visited 1 Nov. 2009.

http://www.cs.cmu.edu/~claytronics/publications/index.html
http://www.cs.cmu.edu/~claytronics/publications/index.html
http://staff.aist.go.jp/e.yoshida/test/index-e.htm
http://staff.aist.go.jp/e.yoshida/test/index-e.htm
http://www.isi.edu/robots/media-superbot.html
http://www.isi.edu/robots/media-superbot.html

BIBLIOGRAPHY 223

[23] A. Kamimura, S. Murata, E. Yoshida, H. Kurokawa, K. Tomita, and S. Kokaji,
Self-reconfigurable modular robot - experiments on reconfiguration and locomotion,
IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS-2001), vol. 1, October-
November 2001, pp. 606–612.

[24] K. Kotay, D. Rus, M. Vona, and C. McGray, The self-reconfiguring robotic molecule:
Design and control algorithms, IEEE Int. Conf. on Robotics & Automation (ICRA),
May 1998, pp. 424–431.

[25] H. Kurokawa, K. Tomita, E. Yoshida, S. Murata, and S. Kokaji, Motion simulation of
a modular robotic system, IEEE Int. Conf. Industrial Electronics, Control and Instru-
mentation (IECON-2000), Mechanical Engineering Laboratory, AIST, MITI, October
2000, pp. 2473–2478.

[26] S. Murata, H. Kurokawa, and S. Kokaji, Self-assembling machine, IEEE Int. Conf.
on Robotics & Automation (ICRA94) (San Diego, CA, USA), vol. 1, May 1994,
pp. 441–448.

[27] S. Murata, H. Kurokawa, E. Yoshida, K. Tomita, and S. Kokaji, A 3-d self-
reconfigurable structure, IEEE Int. Conf. on Robotics & Automation (ICRA), vol. 1,
May 1998, pp. 432–439.

[28] S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita, and S. Kokaji,
M-tran: self-reconfigurable modular robotic system, IEEE/ASME Transactions on
Mechatronics (Yokohama, Japan), vol. 7, Tokyo Inst. of Technol., December 2002,
issue 4, pp. 431–441.

[29] S. Murata, E. Yoshida, K. Tomita, H. Kurokawa, A. Kamimura, , and S. Kokaji, Hard-
ware design of modular robotic system, IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS00) (Takamatsu, Japan), 2000, pp. 2210–2217.

[30] NASA, Mars rovers braving severe dust storms, http://www.jpl.nasa.gov/
news/news.cfm?release=2007-080, July 2007, last visited 1 Nov. 2009.

[31] , Dust storm cuts energy supply of nasa mars rover spirit, http:
//marsrovers.nasa.gov/newsroom/pressreleases/20081110a.
html, November 2008, last visited 1 Nov. 2009.

[32] , Space shuttle and international space station, http://www.nasa.gov/
centers/kennedy/about/information/shuttle_faq.html#10,
February 2008, last visited 1 Nov. 2009.

[33] E. Østergaard, K. Kassow, R. Beck, and H. Lund, Design of the atron lattice-based
self-reconfigurable robot, Autonomous Robots 21 (2006), no. 2, 165–183.

http://www.jpl.nasa.gov/news/news.cfm?release=2007-080
http://www.jpl.nasa.gov/news/news.cfm?release=2007-080
http://marsrovers.nasa.gov/newsroom/pressreleases/20081110a.html
http://marsrovers.nasa.gov/newsroom/pressreleases/20081110a.html
http://marsrovers.nasa.gov/newsroom/pressreleases/20081110a.html
http://www.nasa.gov/centers/kennedy/about/information/shuttle_faq.html#10
http://www.nasa.gov/centers/kennedy/about/information/shuttle_faq.html#10

224 BIBLIOGRAPHY

[34] K. Prevas, C. Unsal, M. Efe, and P. Khosla, A hierarchical motion planning strategy
for a uniform self-reconfigurable, IEEE International Conference on Robotics and
Automation (ICRA), vol. 1, May 2002, pp. 787–792.

[35] T. Regge and R. Zecchina, Combinatorial and topological approach to the 3d ising
model, Journal of Physics A 33 (2000), 741–761.

[36] M. De Rosa, S. Goldstein, P. Lee, J. Campbell, and P. Pillai, Scalable shape sculpting
via hole motion: Motion planning in lattice-constrained module robots, Proceedings
of the 2006 IEEE International Conference on Robotics and Automation (ICRA ’06),
May 2006.

[37] , Programming modular robots with locally distributed predicates, Proceed-
ings of the IEEE International Conference on Robotics and Automation ICRA ’08,
2008.

[38] D. Rus and M. Vona, Crystalline robots: Self-reconfiguration with compressible unit
modules, Autonomous Robots 10 (2001), no. 1, 107–124.

[39] LLC Practical Robotic Services, Unimate robots, http://www.prsrobots.
com/unimate.html, last visited 1 Nov. 2009.

[40] W. Shen, M Krivokon, H. Chiu, J. Everist, M. Rubenstein, and J. Venkatesh, Multi-
mode locomotion via superbot reconfigurable robots, Autonomous Robots 20 (2006),
no. 2, 165–177.

[41] A. Sproewitz, A. Billard, P. Dillenbourg, and A. Ijspeert, Roombots–mechanical de-
sign of self-reconfiguring modular robots for adaptive furniture, Proc. 2009 IEEE
ICRA, to appear, May 2009.

[42] A. Sproewitz, R. Moeckel, J. Maye, and A. Ijspeert, Learning to move in modular
robots using central pattern generators and online optimization, Int. J. Rob. Res. 27
(2008), no. 3-4, 423–443.

[43] E. Stofan, C. Elachi, J. Lunine, R. Lorenz, B. Stiles, K. Mitchell, S. Ostro,
L. Soderblom, C. Wood, H. Zebker, S. Wall, M. Janssen, R. Kirk, R. Lopes, F. Pa-
ganelli, J. Radebaugh, L. Wye, Y. Anderson, M. Allison, R. Boehmer, P. Callahan,
P. Encrenaz, E. Flamini, G. Francescetti, Y. Gim, G. Hamilton, S. Hensley, W. John-
son, K. Kelleher, D. Muhleman, P. Paillou, G. Picardi, F. Posa, L. Roth, R. Seu,
S. Shaffer, S. Vetrella, and R. West, The lakes of titan, Nature 445 (2007), 61–64.

[44] R. Sutton and A. Barto, Reinforcement learning: An introduction, MIT Press, 1998.

http://www.prsrobots.com/unimate.html
http://www.prsrobots.com/unimate.html

BIBLIOGRAPHY 225

[45] Duke University, Self-reconfigurable robots: Papers, www.cs.duke.edu/˜sgs/
robots/papers.php, December 2008, last visited 1 Nov. 2009.

[46] C. Ünsal and P. Khosla, Mechatronic design of a modular self-reconfiguring robotic
system, IEEE International Conference on Robotics & Automation (ICRA) (San Fran-
cisco, CA, USA), vol. 2, April 2000, pp. 1742–1747.

[47] P. Vanhavskaya, L. Kaelbling, and D. Rus, Learning distributed control for modu-
lar robots, IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), vol. 3, 2004, pp. 2648–2653.

[48] www.oloscience.com, Snake robot in the water, http://www.youtube.com/
watch?v=vn2Pb_Kh8Pk, June 2008, last visited 1 Nov. 2009.

[49] M. Yim, K. Roufas, D. Duff, Y. Zhang, C. Eldershaw, and S. Homans, Modular recon-
figurable robots in space applications, Auton. Robots 14 (2003), no. 2-3, 225–237.

[50] M. Yim, W. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins, and
G. Chirikjian, Modular self-reconfigurable robot systems: Challenges and opportu-
nities for the future, IEEE Robotics and Automation Mazazine (2007), 43–52.

[51] M. Yim, Y. Zhang, and D. Duff, Modular robots, IEEE Spectrum (2002), 30–34.

[52] M. Yim, Y. Zhang, J. Lamping, and E. Mao, Distributed control for 3d metamorpho-
sis, Autonomous Robots 10 (2001), 41–56.

[53] E. Yoshida, S. Murata, A. Kamimura, K. Tomita, H. Kurokawa, and S. Kokaji, A
self-reconfigurable modular robot: Reconfiguration planning and experiments, The
International Journal of Robotics Research 21 (2002), no. 10, 903–916.

[54] E. Yoshida, S. Murata, S. Kokaji, K. Tomita, and H. Kurokawa, Micro self-
reconfigurable robotic system using shape memory alloy, Distributed Autonomous
Robotic Systems 4 (2000), 145–154.

[55] V. Zykov, E. Mytilinaios, M. Desnoyer, and H. Lipson, Evolved and designed mod-
ular robotics systems capable of self-reproduction, IEEE Trans. Robotics (Mech. &
Aerosp. Eng., Cornell Univ., Ithaca, NY), vol. 23, April 2007, Issue 2, pp. 308–319.

www.cs.duke.edu/~sgs/robots/papers.php
www.cs.duke.edu/~sgs/robots/papers.php
http://www.youtube.com/watch?v=vn2Pb_Kh8Pk
http://www.youtube.com/watch?v=vn2Pb_Kh8Pk

	Table of Contents
	Abstract
	Acknowledgments
	Preface: Team Context
	List of Acronyms
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	Benefits of Modular Robots
	Applications

	Problem Statement
	Ultimate Goal

	Challenges
	Approach
	Assumptions

	Summary of Results
	Thesis Outline

	Background: SRR Hardware
	History
	Module Design
	Types of Modular Robots

	Hardware Review
	What Constitutes a Good Design?
	Connection Mechanisms
	Case 1: ATRON
	Case 2: MTRAN
	Case 3: Superbot
	Case 4: Roombot

	Background: Reconfiguration Planning
	Introduction
	Native Kinematics
	Decentralized Nature
	Connectivity Concept
	Common Challenges
	Hierarchical Methods

	Reinforcement Learning
	Overview
	Exploration vs. Exploitation
	Dynamic Programming
	MAXQ

	Comparison of Existing Planners
	Stochastic vs. Deterministic
	Metamodules vs. Modules
	Homogeneous vs. Heterogeneous
	Centralized vs. Decentralized
	Serial vs. Parallel
	Simultaneous Actuation
	Max. modules helper aids

	Case 1: Fracta Planner (1994)
	Representation of a Fracta
	Representation of the Fracta cluster
	Algorithm
	Experimental Results
	Discussion

	Case 2: MTRAN Planner (2002)
	Algorithm
	Discussion

	Case 3: Claytronics Planner (2006)
	Algorithm
	Experimental Results
	Discussion

	Case 4: Million Module March (2008)
	Cubic Metamodules
	Algorithm
	Discussion

	Case 5: Graph Signature (2008)
	Conclusions

	Centralized Planning for 3R-Type Modules
	Problem Definition & General Approach
	Terminology

	State Space Reduction
	Lattice Structure
	Module Isomorphisms

	State Representation
	Motion Primitives
	Helper Modules
	Simultaneous Actuation

	Algorithm
	GUI
	Tile Pattern
	Global Search
	Connectivity Checker
	Local Search
	Transition
	Collision Detection
	Translation

	Evaluation
	Analysis
	Examples

	Discussion

	Decentralized Planning for 3R-Type Modules
	Algorithm
	Local Search
	Message Passing
	Parallelization

	Evaluation
	Analysis
	Examples

	Discussion

	Conclusions
	Summary of Work Completed
	Implications of Thesis
	Future Work
	Hardware Experiments
	Roombots
	Full Generalization

	Index to Multimedia Extensions
	Extra Routines
	Glossary
	Bibliography

