
Motion Planning and Stochastic

Control with Experimental Validation

on a Planetary Rover

Rowan McAllister, BE (Hons 1) BSc

A thesis submitted in ful�llment

of the requirements of the degree of

Masters of Philosophy

Australian Centre for Field Robotics

School of Aerospace, Mechanical and Mechatronic Engineering

The University of Sydney

August 2012

Declaration

I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by

another person nor material which to a substantial extent has been accepted for the

award of any other degree or diploma of the University or other institute of higher

learning, except where due acknowledgement has been made in the text.

Rowan McAllister, BE (Hons 1) BSc

31 August 2012

ii Declaration

Abstract

Planetary rovers are required to safely navigate across unstructured and hazardous
terrain with increasing levels of autonomy. Autonomy is necessary to react to im-
pending danger because remote control has been proved challenging and dangerous for
planetary rovers due to the large communication delays. Safety is especially a concern
in space applications where a robot is unaccompanied throughout its entire mission.
Unstructured terrain poses several types of hazards to a robot such as getting stuck,
toppling or scraping against rocks. In a dense collection of localised hazards, platform
safety is very sensitive to deviations from an intended path. To maintain the safety
of the platform during navigation, planetary rovers must consider control uncertainty
during motion planning. Thus, not only does the system need to make predictions
of action outcomes, it also needs to estimate the accuracy of these predictions. The
aim of this research is to provide planetary rovers with the ability to plan motions to
goal regions that optimise the safety of the platform by including information about
the accuracy of its controls. Modelling such control uncertainty is di�cult due to the
complex interaction between the platform and its environment. In this thesis, we pro-
pose an approach to learn the outcome of control actions from experience, represented
statistically using a Gaussian Process regression model. This model is incorporated
explicitly in the planning process using dynamic programming to construct a control
policy for navigation to a goal region. Motion planning strategies are considered that
take into account di�erent types of uncertainties, including uncertainty in distance,
heading and yaw of the platform, across various motion primitives. The approach
is implemented on a holonomic rover with six wheels and a Rocker-bogie frame and
tested on a Mars analogue terrain that includes �at ground, small rocks, and non-
traversable rocks. Planning is computed over a terrain map built using an on-board
RGB-D camera. We report the results of 200 simulated and 95 experimental trials
that validate the approach. These results demonstrate that explicitly incorporating
knowledge of control uncertainty into the motion planning process increases platform
safety by decreasing the likelihood of the rover getting stuck and reducing the cost
accumulated over the executed path. Accounting for heading uncertainty resulted in
the most signi�cant increase in platform safety.

iv Abstract

Acknowledgements

I wish to sincerely thank both my supervisors Robert Fitch and Thierry Peynot for
their constant guidance and support. This work would not have been possible without
their continued assistance, and I have learned so much under their supervision.

A sincere thanks also to my work colleagues Ali, Esa, Ken and Angela whom helped
build, maintain and debug the rover test platform. Being part of this team, and
interfacing this research with other aspects of the rover gave me a great sense of
satisfaction, a great source of learning and a lot of fun.

I would also like to acknowledge the Pathways to Space program of the Powerhouse
museum in Sydney, for their use of the `Marscape' which allowed for testing in a
realistic Martian environment, and maintained interest in the project as a public
exhibition. Also Salah Sukkarieh for heading the rover project.

Lastly I would like to thank my family for their consistent love and support.

�I have approximate answers and possible beliefs and di�erent degrees of certainty
about di�erent things, but I am not absolutely sure about anything�

- Richard Feynman

To Mum, Dad, Marion and Emily

Contents

Declaration i

Abstract iii

Acknowledgements v

Contents vii

List of Figures xi

List of Tables xiii

Nomenclature xv

1 Introduction 1

1.1 Objectives . 1

1.2 Motion Planning and Control Uncertainty 3

1.3 Contributions . 5

1.4 Thesis Structure . 5

2 Related Work 7

2.1 Motion Planning . 8

2.2 Uncertainty . 11

2.2.1 Localisation Uncertainty . 12

2.2.2 Environmental Mapping Uncertainty 13

viii Contents

2.2.3 Control Uncertainty . 14

2.3 Incorporating Control Uncertainty in Motion Planning 14

2.4 Conclusion . 18

3 Background 19

3.1 Dynamic Programming . 19

3.1.1 Overview . 19

3.1.2 Value Iteration . 20

3.1.3 Sweeping . 23

3.2 Gaussian Processes . 24

3.2.1 Model . 25

3.2.2 Inference . 26

4 Motion Planning and Learned Control Uncertainty 29

4.1 Control Uncertainty . 29

4.2 Learning-based Mobility Prediction 30

4.3 Motion Planning . 32

4.4 System . 33

5 Implementation 35

5.1 The Environment . 35

5.2 The Robot . 35

5.2.1 Localisation Accuracy . 37

5.3 Kinematics Model . 37

5.3.1 Predicting attitude angles and chassis con�guration 37

5.3.2 Feature Map . 40

5.3.3 Cost Map . 42

5.4 Planning . 43

5.4.1 State Space . 43

5.4.2 Action Set . 44

Contents ix

5.4.3 Reward Function . 44

5.5 Learning and GP . 45

5.5.1 Training . 45

5.5.2 Prediction . 46

5.5.3 Outputs . 47

5.6 Discussion . 47

6 Experimental Results 49

6.1 Training on Flat and Rough Terrain 49

6.1.1 Flat Terrain Training . 51

6.1.2 Rough Terrain Training . 51

6.2 Simulation of Flat Terrain Traversal 52

6.3 Experiments of Flat Terrain Traversal 57

6.4 Experiments on Unstructured Terrain: Traversing Rocks 60

7 Conclusion and Future Work 69

7.1 Conclusions . 69

7.2 Future Work . 70

Bibliography 71

A 77

A.1 Pseudocode for Motion Planning Algorithm 77

A.2 Pseudocode for Kinematics Model Algorithm 80

x Contents

List of Figures

1.1 Planetary rover �Mawson� in Mars yard 2

2.1 A typical planetary rover system . 8

3.1 Example optimum-policy evaluation and improvement by value iteration 22

4.1 System Outline . 34

5.1 The Mawson Rover and its chassis con�guration 36

5.2 Rover's Kinematic Structure . 38

5.3 Kinematics Model algorithm . 40

5.4 Rover simulated on a terrain model using the kinematic model. 41

6.1 Mobility prediction by action on �at terrain. 51

6.2 Mobility prediction by action on rough terrain. 52

6.3 Example of terrain pro�le features . 53

6.4 Simulated trajectories navigated around a cluster of rocks 54

6.5 Flat traversal experiment . 58

6.6 Example of trajectories taken to avoid several rocks on otherwise �at
terrain . 59

6.7 Rock traversal experiment setup . 62

6.8 Example policy obtained for rough terrain experiment 63

6.9 Motion policies over rough terrain. 64

6.10 Examples of trajectories during the rock traversal experiments 65

xii List of Figures

List of Tables

6.1 Mobility Prediction by action, GP features not included 50

6.2 GP hyperparameters trained from traversals in rough terrain 55

6.3 Simulated Planning around a Cluster of Rocks 56

6.4 Flat traversal: probability assessment 60

6.5 Second learning results for rough terrain traversal, used for rock �eld
B. This also compares control errors encountered during learning and
testing. 66

6.6 Planning with traversal over rock �eld A and rock �eld B 67

xiv List of Tables

Nomenclature

a action
A action set or action space
s state
S state space
∆s change in state
δs error in change of state
δshead error in change of state by heading
δsdist error in change of state by distance
δsyaw error in change of state by yaw
p(s′|s, a) control uncertainty model
P (s′|s, a) transition probability function
R(s′, s, a) reward function
α chassis con�guration angles
θ pitch
φ roll
ψ yaw
Θ hyperparameters of the GP
λ terrain pro�le features / characteristics

DP dynamic programming
GP Gaussian process
MDP Markov decision process

xvi Nomenclature

Chapter 1

Introduction

1.1 Objectives

Autonomous planetary rovers have the potential for persistent operation, reacting

in real time to dangerous situations without the need for frequent manual inter-

vention [37]. Operating rovers via remote control, by contrast, is limited by high

communication latency. To enable persistent autonomous exploration, rovers must

be capable of robust and reliable motion planning that considers uncertainty.

In unstructured environments, motion planning algorithms must consider various

forms of uncertainty. One signi�cant source of uncertainty in outdoor terrain is

control uncertainty. Robots such as planetary rovers are designed for mobility in

challenging environments, and understanding the associated control uncertainty for

the purpose of motion planning is di�cult due to the complexity of this type of envi-

ronment. It is critical to consider control uncertainty in motion planning, particularly

in environments that expose the robot to the risk of serious mechanical damage. We

are interested in this problem in the context of planetary rovers [46]. An example of a

planetary rover is shown in Fig. 1.1. This thesis addresses navigation of autonomous

ground vehicles traversing unstructured and potentially dangerous terrain, optimising

platform safety with respect to control uncertainty.

2 Introduction

Figure 1.1 � Planetary rover �Mawson� used for experimental validation, shown in the

Mars yard at the Powerhouse Museum in Sydney, Australia. All experiments were

performed in this environment.

The goal of classical geometric motion planning is to plan a sequence of motions, from

start to goal, that minimise time or distance travelled while avoiding obstacles [35].

The conceptual distinction between free space and obstacles for planetary rovers on

unstructured terrain, however, is not clear. One de�nition of obstacle in the con-

text of unstructured terrain is a region that is impossible to traverse or would cause

mechanical damage to the robot. Such obstacles are not directly observable, though

a continuous metric of risk to the platform's safety can instead be derived using a

kinematics model to predict a relative likelihood of instability. This situation cannot

be modelled by simple distance thresholds surrounding obstacles because risk varies

across free space as a continuous metric.

The result of a control input is never certain due to imperfect actuation and imperfect

knowledge about robot-terrain interaction. Thus a robot will not follow an intended

path exactly, which can be disastrous in an environment cluttered with high risk

regions. A knowledge of control uncertainty is necessary to avoid control commands

where, due to control uncertainty, the robot would have a high likelihood of deviating

into a high risk region. As deterministic planning algorithms do not account for

deviations from the computed path, they expose a robot to considerable risk.

1.2 Motion Planning and Control Uncertainty 3

Accurately predicting executed behaviour in response to a given control input is dif-

�cult for planetary rovers due to complex terramechanics [20]. For previously unob-

served terrain, prior models of terrain properties may not be available. It is therefore

important to model control uncertainty with a method that can be feasibly executed

online during operation of the robot, and to validate such a model experimentally.

To reach this goal, the objectives of this thesis are to:

• Develop a motion planning framework that considers control uncertainty to

increase safety of an autonomous platform.

• Provide a method to estimate control uncertainty of the platform. Realistic

estimates of control uncertainty in new situations are only possible by observing

the relation between control uncertainty and the local environment in previous

motions. Thus, control uncertainty will be learned from previous traversals of

terrain.

• Validate that the methods proposed increase the safety and the reliability of a

real platform when traversing a high-�delity Mars-analogue environment.

1.2 Motion Planning and Control Uncertainty

The aim of this motion planner is to compute control inputs that guide the robot

safely towards a goal region given a representation of the surrounding environment.

A motion policy1 is used to consider the expected long-term consequences of each po-

tential deviation. A policy is required, rather than a path, since potential deviations

of the robot cannot be anticipated due to the uncertainty of control input outcomes.

The motion planner predicts the outcomes of control inputs from speci�ed positions

together with a measure of uncertainty on each prediction using a terrain-robot dy-

namics model. This model is trained on various terrain, and then used for predictions

given an assessment of the immediate environment at a position.
1A motion policy is a many-to-one mapping of each robot position in an environment to the

control input that is to be executed from that position.

4 Introduction

Our approach builds a statistical model of control uncertainty directly from observed

behaviour, represented as a Gaussian process (GP). We consider uncertainty in the

heading of the platform and in distance travelled. We use this GP model to build

a stochastic transition function for use in motion planning. The planning goal is to

compute a policy that allows the robot to reach a given goal location while maintaining

the safety of the platform. We assume that a map of the environment is available,

represented as a digital elevation map. Platform safety is represented by a cost

function over this terrain map, which is constructed a priori using on-board sensors.

We compute the policy using dynamic programming (DP), where the resolution of

discretised geometric states is equal to that provided in the elevation map.

This is a general approach to motion planning which considers uncertainty in control

in the planning phase to compute safe paths over unstructured terrain. A number

of research groups have proposed frameworks for autonomous ground vehicles with

similar aims. However, few of these account for control uncertainty in the planning

phase, nor address appropriate means of training a model of control uncertainty

for realistic predictions of action outcomes. Existing motion planning research under

uncertainty has not yet been extended to cases of unstructured terrain outdoors. This

gap between realistic perception and good motion planning under explicit uncertainty

has not been tackled before on unstructured terrain, although much attention has

been given to simulated environments [2, 7, 10, 19, 30, 31, 42].

In this thesis, we present the details of our approach and its implementation for the

planetary rover shown in Fig 1.1, which was introduced originally in [39]. The environ-

ment consists of �at terrain, traversable rocks, and non-traversable rocks. GP models

are learned for rock traversal, mapping environment features to a distribution of re-

sulting rover con�gurations (in state space) for two types of control actions. The cost

map is constructed from data collected by an RGB-D camera on-board the rover. We

report the results of 200 simulated trials and 95 experimental trials that evaluate the

rover's ability to traverse �at terrain and small rocks while avoiding non-traversable

rocks. We compare the performance of the rover in executing policies constructed

with and without control uncertainty. Our results show empirically that planning

1.3 Contributions 5

with control uncertainty improves the rover's ability to navigate while avoiding non-

traversable areas. These results demonstrate the value of planning under uncertainty

for planetary rovers using a real platform in a realistic environment.

1.3 Contributions

The main contributions of this thesis are an approach to motion planning that con-

siders control uncertainty to improve the safety of an autonomous platform, and

validation of this approach on real unstructured terrain, supporting its suitability for

complex environments in the real world.

The speci�c contributions are:

• a stochastic transition model based on Gaussian processes,

• an instantiation of the model using an experimental Mars rover platform travers-

ing single rocks,

• a motion planning algorithm based on dynamic programming to maximise plat-

form safety,

• a simulation of the motion planner using learned data,

• hardware experiments that demonstrate the full system.

1.4 Thesis Structure

Chapter 2 is a review of related work. First, motion planning algorithms are re-

viewed in the context of a planetary rover system. Multiple sources of uncertainty

are then considered, and implications of these sources of uncertainty on motion plan-

ning are discussed. Finally, methods to incorporate control uncertainty into motion

planning are discussed, as well as how models of uncertainty have been learned from

experience.

6 Introduction

Chapter 3 introduces key algorithms used in the development of our technical ap-

proach. The DP algorithm is �rst discussed, outlining how optimal control policies are

computed, followed by an example. The GP model is then presented, and inference

using GP is discussed.

Chapter 4 outlines the approach chosen in this thesis for motion planning under

stochastic control. This approach is general and applicable to any ground robot. The

choice of DP as a search algorithm is �rst discussed, including the model of control

uncertainty as a stochastic transition function. Learning mobility prediction with the

use of Gaussian processes is then discussed. Finally, a high-level description of the

whole system is presented.

Chapter 5 discusses implementation details of the approach used on the particular

robotic platform used for experimental validation. Details of the platform, how it is

modelled and speci�cation of the state space are given. The source of data chosen to

train the GP is discussed.

In Chapter 6 an experimental validation is presented. Results from motion planning

in simulation and in real experiments on �at terrain and on rough terrain are given

and discussed. Results show smoother behaviour and an increase in executed safety

of the platform when planning considering control uncertainty.

Chapter 7 provides a conclusion and discusses future work.

Chapter 2

Related Work

A typical autonomous terrain traversal system is shown in Fig. 2.1 [4]. This system

observes the environment using sensors, which pass data to the rover's software com-

ponents (yellow) to decide the next action command or path for a controller to follow.

In turn, the controller sends control commands to the motors and actuators on the

rover platform. Sensor data is used to determine the rover's localisation and also to

build a terrain model. The terrain model is a representation of the rover's environ-

ment. It is used to predict rover-terrain interaction throughout the environment and

for building a cost map. A cost map is used to quantify the di�culty of traversability

at locations throughout the known environment. This cost depends on vehicle knowl-

edge - a knowledge of constraints about how the rover can move and operate in an

environment. The motion planner uses the vehicle knowledge, a speci�cation of the

goal region to traverse to and input from the localisation and cost map to decide the

next appropriate action command to send to the controller. The aim of the motion

planner is to send a series of action commands, directing the rover to its goal location,

in a way which optimises an objective function such as accumulated cost or safety of

the platform.

8 Related Work

Controller

E
n

v
ir

o
n

m
e
n

t Terrain Model

Localisation

Sensors Costmap

Motion Planner Robot

Goal Input

Vehicle Knowledge

Figure 2.1 � A typical planetary rover system. Hardware components shown in red,

software components shown in yellow.

2.1 Motion Planning

Planning motions of a robot through geometric space that avoid collisions with ob-

stacles necessitates a knowledge of the robot's geometry. The robot's con�guration

(vector) is a speci�cation of the values of each of its degrees of freedom, which de-

termine the geometric space the robot occupies. Con�guration space is the set of all

con�gurations possible. This is often expressed as Cobstacle for con�guration states

that result in a contact with an obstacle, and Cfree otherwise. Using this abstrac-

tion to plan in con�guration space rather than geometric space allows generalised

motion planning algorithms to be used, which are independent of how the robot is

constructed. Planning for point robots in known C-space has been studied exten-

sively [33, 35]. The general motion planning problem of �nding a shortest collision

free path, known as the piano-mover's problem, is PSPACE-complete.

Sampling-based planners

Sampling-based algorithms are able to �nd feasible paths in high-dimensional spaces

e�ciently. Feasible paths are collision free but not necessarily shortest. Sampling-

based algorithms are not complete: they cannot detect if a solution does not exist

in �nite time. However, if a solution does exists, the planner will eventually �nd it.

This weaker type of completeness is known as probabilistic completeness [27].

Probabilistic Roadmap (PRM) [28] is a sampling-based method that consists of two

steps: construct a roadmap and then query the roadmap. A roadmap is made up of

2.1 Motion Planning 9

• vertices: states which exist in free space (robot not in contact with an obstacle),

• edges: the result of an action which would cause the robot to transition contin-

uously through state space from one state to another without collisions.

The roadmap is constructed by sampling the con�guration space many times (ran-

domly, or according to a pattern), discarding samples which are not in Cfree, then us-

ing a local planner to attempt to connect to nearby local con�gurations. The roadmap

is queried using any graph search algorithm, and may terminate once a collision-free

path exists between start and goal con�gurations (or possibly keep searching for lower

cost paths). Because the roadmap can be queried for various start and goal con�gu-

rations, PRM is known as a multi-query method.

Rapidly-exploring random trees (RRT) [34] is another, widely used sampling based

planner [7, 42], suited to high-dimensional spaces. RRTs compute open loop paths

by randomly selecting new con�gurations in con�guration space, and use a local

planner to compute a path to a close con�guration on the existing tree to the random

sample. Due to constraints of the robot, the path may not link the two con�gurations

exactly, but nevertheless the tree grows. This has the property of e�cient `space

�lling': �nding a path (albeit non-optimal paths) such that a path can be found

between the root-con�guration to most other con�gurations (or at least close by).

The RRT algorithm is guaranteed to be non-optimal, however the recent development

of the RRT* algorithm [24] has been proven to probabilistically converge towards an

optimum path-solution with increased sampling. An RRT admits a single start and

goal con�guration, and thus is a single-query method.

Grid search algorithms

Grid search is a family of algorithms that plan over a discretisation of both con�guration-

space and action-space. Reachability trees, A* (or similarly D*) and dynamic pro-

gramming are resolution-complete grid search algorithms. Resolution-completeness

means that the solution is computed with respect to the given discretisation.

10 Related Work

Reachability trees are arguably the simplest grid-search algorithm. Motion plans are

computed by building and traversing a tree structure of con�guration-nodes using

Breadth First Search (BFS) which �nds shortest paths with (and only with) unit

edge weights. The root node is the robot's start con�guration, and node expansion

involves assessing the result of each motion primitive available to the robot. Each

motion primitive results in a new con�guration child-node. The process stops when a

goal-con�guration is reached. The path returned is the path of least possible motion

primitives the robot requires in moving from start to goal.

A* and Dijkstra's algorithm �nd shortest paths with non-negative, non-unit edge

weights and are thus more general than BFS. A* also uses a heuristic function to guide

a search, making it much more e�cient in large search domains. Dijkstra's algorithm

is a special case of A* that uses a constant-zero (uninformative) heuristic function.

As such, A* is more general and e�cient than BFS and Dijkstra's algorithm, and a

common choice for motion planning algorithms [17, 31]. D* is a similar but dynamic

version of A*. A major drawback of reachability trees, Dijkstra's algorithm, A* and

D*, however, is con�guration-transitions are assumed to be deterministic. These

algorithms do not consider consequences of uncertainty in transitions explicitly. In

addition, these algorithms compute only a single path and not a complete motion

policy which is more relevant to a robotic system which will inevitably deviate from

an intended path.

Markov decision processes (MDPs) are commonly used to formulate problems in mo-

tion planning with uncertainty [35, 36], treating uncertainty explicitly and providing

optimal solutions with respect to the model of uncertainty. Control uncertainty is

represented as a stochastic transition function P (s′|s, a), describing a probabilistic

distribution of resultant states as a function of an original state and action selected.

An optimal policy can be computed using P (s′|s, a) with dynamic programming [2].

However, these techniques are most often evaluated in simulation only and there is a

critical need for further validation using real robots.

The Hamilton-Jacobi-Bellman (HJB) equation [23] from optimal control theory is a

continuous calculus of dynamic programming, solving the search explicitly with ordi-

2.2 Uncertainty 11

nary di�erential equations (ODEs). Such a technique can be far more e�cient than

iterative computation, but unfortunately so far, a general technique for solving asso-

ciated ODEs has not been found. Solutions have been to some simple systems whose

dynamics are described by linear di�erential equations (e.g. mass-spring systems).

This can be extended to Linear-Quadratic control problems, which additionally iden-

tify a cost to minimise which is a quadratic functions of state-deviation and control

input.

2.2 Uncertainty

Uncertainty can describe a lack of knowledge or inability to detect precisely the state

of an entity or the outcome of a process. From an agent's point of view, there are

multiple possibilities of what the true state of an entity is, or what the outcome of a

process will be. Quanti�cation of uncertainty, with su�cient data, can be represented

mathematically using probability density functions [1]. Di�erent types of uncertainty

have been identi�ed [1, 41]:

1. Ontological : Irreducible or true randomness, e.g. quantum mechanics where

ground truth itself is probabilistic,

2. Epistemological : A lack of full knowledge about the universe (possibly includ-

ing the robot itself). This includes knowledge of the state of the universe, and

knowledge of physical processes. A subtype is systematic uncertainty: some-

thing can be known in theory, but is not considered in practice. For instance, a

model neglecting certain information about reality, in order to simplify, or lim-

ited by computational capacity, and as a result predicts di�erently to reality.

3. Aleatoric: Limits of the precision of knowledge or detection capability to verify

that two control inputs are identical. For instance, repeated trials of a system

that records successive control inputs as identical will actually result in di�erent

outcomes due to undetectable di�erences between successive control inputs.

12 Related Work

This thesis is concerned with both Aleatoric and Epistemological uncertainty. The

following subsections consider the di�erent forms of uncertainty that exist in the

rover system (Fig. 2.1) and the related work that mitigates risk and cost to a rover

by incorporating knowledge of each uncertainty into the motion planner.

2.2.1 Localisation Uncertainty

Localisation uncertainty implies that a robot does not know exactly where it is in

relation to the world around it. If a robot cannot be exactly sure of where it is, the risk

of collisions with known obstacles is increased. When motion planning operates in a

global frame of reference, this uncertainty and associated risk of collision will increase

with time if the localisation system is proprioceptive. The severity (or variance) of

this uncertainty is dependent on the localisation algorithm. Typically, environments

with many distinct features allow for lower localisation uncertainty [12].

Considering localisation uncertainty in motion planning involves planning in belief

space. Belief space is a probabilistic distribution over possible states. The partially-

observable Markov decision process (POMDP) [22] is a common solution for planning

in belief states according to the MDP model of the environment [21, 30]. Optimal

actions in the POMDP framework are those which maximise the average expected

utility of executing the action from each possible state the robot is in, weighted by the

level of belief (probability) that the robot is in that state. POMDPs are complete and

provide optimal motion policies, although do not scale as well as other methods in-

cluding PRM-adapted approaches for searching belief space [44]. Other methods plan

according to anticipated localisation error in possible future con�gurations. Given a

path towards some future con�guration, the localisation algorithm can be modelled

according to known features it would see, and thus a prediction of localisation error

could be computed. Such a method was proposed in [10] by including the predicted

localisation error in the cost function.

2.2 Uncertainty 13

2.2.2 Environmental Mapping Uncertainty

When an object is sensed, e.g. using a laser range �nder, the distance and/or direction

measured will vary slightly from the true value due to imperfect sensing. A similar

case arises if a robot is given an imperfect map of its environment. As a consequence,

a robot cannot be exactly sure of:

1. How far it is from sections of the terrain (terrain-robot relation),

2. The topology of terrain (terrain-terrain relation).

Examples can include point clouds where individual points have associated position

uncertainty [49]. If uncertainty exists in the representation of the terrain, a robot

planning motions over such terrain will be uncertain about its interaction with that

terrain. The robot will therefore be uncertain about the incurred risk and cost at

locations within the elevation map.

Methods to compute uncertainty in terrain include incorporating a sensor model [48].

In addition, estimation of unseen terrain structure with uncertainty is possible with

Gaussian process regression [32]. This is particularly useful in unstructured terrain,

of which observations usually contain shadows caused by occlusions. A motion plan-

ning method in [43] uses GP regression of unstructured terrain to compute elevation-

uncertainty at unobserved locations. This involved selection of foothold locations dur-

ing traversal of a legged robot to a goal region. By including the elevation-uncertainty

of terrain into a cost function, a greater reliability of selecting safe footholds was

achieved compared with an Interpolated Elevation Grid terrain model that `�lls in

the gaps' with no uncertainty. Methods to deal with environmental mapping uncer-

tainty in motion planning have involved frameworks of probabilistic obstacles, where

an obstacle is known to exist, but the location of that obstacle is only approximately

known [11, 16, 40]. These motion planners reason about the probability of each

con�guration being an obstacle. This was implemented using PRMs, querying least-

cost paths where the cost of each con�guration is a function of the belief that the

con�guration is in Cobstacle.

14 Related Work

2.2.3 Control Uncertainty

Due to imperfect actuation, an action command that the controller receives from the

motion planner will not be executed in an exactly predictable way. Thus, from a

state the rover is in before executing an action, the resultant state is not known with

certainty a priori. In regards to motion planning, this means a robot can never be

certain about the exact trajectory it will actually execute.

Control uncertainty can be considered in motion planning using a stochastic transition

function. This stochastic transition function expresses the probability of arriving at

a resultant state s′ from an original state s and action a selected by: P (s′|s, a) which

can be incorporated into motion planning explicitly. DP can use this model of control

uncertainty to compute control commands which are optimised with respect to this

model to avoid high risk regions [2]. Control uncertainty is the type of uncertainty

this thesis addresses, and a discussion of how control uncertainty is incorporated into

motion planning is given in Sec. 2.3.

2.3 Incorporating Control Uncertainty in Motion Plan-

ning

Incorporating control uncertainty in motion planning can be avoided using `safety

factors': a minimum distance a planned path needs to be from an obstacle, such

that even if the robot slips or skids unexpectedly, it is unlikely to collide with an

obstacle. Such an approach �rst involves the expansion of obstacles using Minkowski

addition [50] to account for the shape of the robot [2], and a further obstacle expan-

sions by the `safety factor' amount in each direction. Such an approach can work well

in indoor environments, where con�guration space can often be classi�ed as Cfree or

Cobstacle. Additionally, safety factors pose arti�cial limits on what would otherwise be

Cfree, such that in cluttered environments, it may remove the possibility that a solu-

tion can be found at all. If unstructured terrain is modelled in this fashion, it often

represents a very cluttered environment, and thus such an approach systematically

2.3 Incorporating Control Uncertainty in Motion Planning 15

discards many feasible paths. Conversely, in unstructured terrain we may wish to

express di�culty of traversal by a continuous metric, otherwise such an approach is

neither optimal nor robust with respect to a measure of di�culty, nor the uncertainty

model of the platform.

The rest of this section presents previous research on motion planning with control

uncertainty. Major considerations in such research are:

• choice of planning algorithm,

• how control uncertainty can be incorporated into the planning process,

• how that control uncertainty is modelled and/or learned.

One approach is to avoid regions the platform estimates would incur higher uncer-

tainty in control. This avoids the problems of dealing with uncertainty by avoiding

regions of higher uncertainty. This has been done by expressing uncertainty as a cost,

where higher uncertainty incurs higher cost, and then planning a path that minimises

this cost assuming deterministic control [17]. However, by `avoiding the problem',

such an approach can fail in terrain where most states incur considerable control un-

certainty. In addition, such a cost function is slightly `misguided': high uncertainty

does not necessarily imply high risk of collision, nor vice versa. A fundamental re-

quirement of motion planning is to avoid obstacles, and such a cost function does not

optimise against probability of collisions.

Modelling uncertainty of control can be done implicitly by modelling a feedback

controller along a complete pre-selected path, or explicitly during the development of

the path itself [27]. Linear-Quadratic-Gaussian (LQG) controllers have been used to

model potential deviations from a pre-computed path to consider the consequences

from potential deviations [7, 10, 15, 19, 21, 42]. However, this treats motion planning

and control uncertainty as decoupled: candidate paths are selected, and afterwards

evaluated in light of a stochastic control model. Several iterations may result in some

rejected paths until a suitable path is found. Whilst this methodology can provide

paths that satisfy a minimum-threshold of safety, the path selected is not optimised

16 Related Work

with respect to control uncertainty. Modelling control explicitly, by contrast, treats

the problems as coupled. Once the robot has deviated from its path, the best option

may be to take an alternative route. This can be accomplished by solving an optimal

control policy which does not assume (nor force) a robot to commit to a pre-computed

path, once deviations inevitably occur in the execution of its motion strategy.

Additionally, an implication of using LQG controllers to model uncertainty in the

controls is that the model assumes the degree and nature of uncertainty in controls

is homogeneous throughout all the environment. While this could be suitable in ho-

mogeneous environments, it is not a realistic assumption on unstructured terrain.

Additionally, these methods were validated in simulation only, and not unstructured

terrain. Learning mobility, and consequently control uncertainty, directly from ex-

perience of previous traversals over terrain is more realistic. Techniques to predict

mobility of a robotic platform have been achieved using terramechanics and near-to-

far learning. These methods have been used to estimate uncertainty in outcome of

motion-primitives and to estimate slip. Slip is the di�erence between wheel angular

velocity and linear velocity of the wheel centre divided by wheel radius, normalised by

the maximum of both terms [5]. Any slip value other than zero is often undesirable.

Physics-based approaches that study terramechanics provide detailed mobility mod-

els by considering features such as soil cohesion and density [18]. These methods have

been developed and tested for rovers on real terrain, not just simulation. An advan-

tage of these methods is feature identi�cation: motion is predicted based upon the

values of a small and relevant set of features selected from a physical understanding of

the rover-environment interaction (e.g. soil cohesion, soil density, wheel traction etc.).

This can reduce the number of parameters that require calibration during a learning

phase to predict rover motion. Statistical mobility prediction using terramechanics

has been proposed that generates a Gaussian distribution over predicted future states

on homogeneous terrain [20], and to predict slip [19]. These methods are well suited

to locally �at and homogeneous terrain of a known slope. However, it is di�cult to

precisely model non-homogeneous terrain that includes di�erent grades of sand and

rocks of di�erent sizes and shapes. In addition, it is extremely di�cult to model how

2.3 Incorporating Control Uncertainty in Motion Planning 17

rocks may move in reaction to the force exerted by a rover wheel.

Recent work has modelled mobility as a function of terrain in a self-supervised learn-

ing framework called `near-to-far' learning [9, 29]. These approaches use observations

when `far away' to classify terrain types according to the associated proprioceptive

mechanical properties encountered when on (`near') that same terrain. While this

approach does not explicitly learn a model of control uncertainty, this learning frame-

work could be suitable for that purpose, and could be used to learn continuously even

when deployed on missions. Inference using regression, however, would have the ad-

vantage over classi�cation used in this technique of a less abrupt change in behaviour

near the decision boundaries of the classi�er.

Research done by [3, 25] learned to estimate slip based on visual and geometric

information of unstructured terrain not yet traversed. Work in [25] uses terrain slope

and control inputs to estimate wheel slip using GPs. This method does not utilise

the uncertainty in slip explicitly, rather it creates a mobility map of velocity limits

as a function of estimated slip and uses deterministic A* to solve for least cost path.

However, this framework for slip estimation could be extended to provide a model of

uncertainty in resultant state and thus control uncertainty. The use of non-parametric

learning methods such as GPs in the context of estimating mobility in unstructured

terrain has the advantage over parametric models that it makes fewer assumptions

about the environment and environment-robot interaction [26].

Integrating a realistic model of control uncertainty into the planning process requires

a non-deterministic planning algorithm. Methods that either avoid regions of uncer-

tainty, decouple control and planning, or use parametric models of control uncertainty

su�er from lower expectation of robot safety because they make strong assumptions

of the environment. Despite these drawbacks the aforementioned methods have some

advantages which are summarised in Sec. 2.4, and used to inspire our approach pre-

sented in Chapter 3.

18 Related Work

2.4 Conclusion

The literature shows that incorporating a model of uncertainty into motion planning

increases the safety of a platform. Safety is additionally optimised, with respect to

the uncertainty model, when the model is explicitly incorporated into motion plan-

ning. A realistic uncertainty model necessitates training. This is especially true for

unstructured terrain where the degree of control uncertainty can vary widely, and

is not homogeneous. E�ective methods of self-supervised learning could be used to

inference control uncertainty, using regression instead of classi�cation. For unstruc-

tured terrain, we argue that learning without a complex terramechanics model, nor

any parameterised model, is required. The use of GPs as a non-parametric learning

algorithm is a suitable choice in the context of motion prediction over unstructured

terrain because it makes fewer assumptions about the complex interaction between

the environment and the robot than parametric models.

Chapter 3

Background

This chapter introduces two key algorithmic ideas used in this thesis: dynamic pro-

gramming and Gaussian processes.

3.1 Dynamic Programming

Dynamic programming computes optimal control policies given a complete description

of an environment. In particular, DP can be used to compute the solution to a problem

formulated as an MDP. Using DP in this way assumes the environment is Markovian,

localisation is accurate and control is either deterministic or stochastic.

3.1.1 Overview

An MDP is de�ned by a �nite set of states S, a set of actions available A(s) executable

at each state s ∈ S, a transition probability function P (s′|s, a) which outputs the

probability that executing action a from state s will result in the agent being in state

s′, and a reward function R(s′, s, a) which outputs the `reward' an agent would receive

by executing action a from state s which results in state s′ [47].

Dynamic programming operates by computing a value function V (s) for each s ∈ S,
which describes the `desirability' of an agent being in each state s if the goal of the

20 Background

agent is to transition to a goal state in S. Default values are given to all states

initially, and various algorithms exist that compute the optimal value function V ∗(s).

The optimal value function in the MDP framework satis�es the Bellman optimality

equation:

V ∗(s) = max
a

{∑
s′

P (s′|s, a)(R(s′, s, a) + γV (s′))
}
, (3.1.1)

where s is the state of an agent, a is an executable action at state s and 0 < γ ≤ 1

is the discount factor. γ determines how important future rewards are to an agent

relative to immediate rewards. Given the Bellman optimality equation (Eq. 3.1.1),

the optimal policy π∗(s) is computed:

π∗(s) = argmax
a

{∑
s′

P (s′|s, a)(R(s′, s, a) + γV (s′))
}
, (3.1.2)

A more extensive description of the various algorithms in DP, and methods to increase

their e�ciency can be found in Sutton and Barto's book (1998) [47]. This thesis uses

the value iteration method, detailed below, to construct an optimal motion planner.

3.1.2 Value Iteration

Multiple methods exist for computing the convergence of the value function at each

state in S to satisfy Eq. 3.1.1. Value iteration is one such method.

Pseudocode of value iteration is presented in algorithm 3.1. Value iteration begins by

initialising the value of all states in S to−∞ , except for goal states which retains �xed

values of zero. Goal states may comprise a single state, or multiple states, perhaps all

state that lie within a goal region. Values of each state are updated iteratively, and

once all state values have stabilised (condition on line 9), the iteration terminates,

and the optimum policy is returned. The optimum policy is a greedy search of the

highest value state (line 10). At each iteration (while loop: lines 2 - 9) the value of

each state is updated according to the current-iteration or previous-iteration value

of resultant states s′ it can reach, by execution of each action a ∈ A (line 6). This

update (line 6), assesses the maximum value of state s according to each action a ∈ A

3.1 Dynamic Programming 21

that can be executed at state s. For each action, the `value of state s if action a is

taken' is computed by a probabilistically-weighted reward and value of the resultant

state. The maximum value is selected, and the value function is updated for state s

(line 6).

Algorithm 3.1: Dynamic programming: Value evaluation, (edited) from Sut-
ton and Barto [47]

1: Initialise V (s) = −∞∀ s ∈ S
2: while ∆ < θ (a small positive number) do
3: ∆← 0
4: for each s ∈ S do
5: v ← V (s)
6: V (s)← maxa

∑
s′ P (s′|s, a)[R(s′, s, a) + γV (s′)]

7: ∆← max(∆, |v − V (s)|)
8: end for
9: end while
10: Output: π∗(s) = arg maxa

∑
s′ P (s′|s, a)[R(s′, s, a) + γV (s′)]

An example of iterative value function convergence, using algorithm 3.1, is shown

in Fig. 3.1 with corresponding policy improvement in Fig. 3.1(b). This shows four

successive iterations (denoted by k), or backups, before convergence is achieved (when

k = 3). In this example, the MDP environment is made of 16 states arranged in a

4× 4 grid. Available actions from any state are to transition either left, right, up or

down to the next neighbouring state. However, a certain action is unavailable at a

particular state if it would cause the agent to transition out of bounds. Goals states

are coloured grey, they begin with value zero, and are the only states exempt from

value updates. Each iteration updates the value function of every state once, which

the agent can use to navigate towards a goal using Eq. 3.1.2. Each action incurs

a reward of `-1' (R(s′, s, a) = 1, ∀ s ∈ S,∀ a ∈ A in this example) to execute an

action. Beginning at the �rst iteration (k = 0), all non-goal state values are set to

negative in�nity. After the �rst backup (k = 1), the value of each state updates by the

maximum value of `reward + value-of-neighbour-state' it �nds. The value of states

22 Background

(a) Policy evaluation (b) Policy improvement

Figure 3.1 � Example optimum-policy evaluation and improvement by value iteration;

grey cells indicate goal states (value 0) and an agent in any other state can transition

one cell left, right, up or down per iteration.

3.1 Dynamic Programming 23

adjacent to the goal states update to −1 + 0 = −1, whilst states further away remain

at negative in�nity as their neighbours were still currently valued as negative in�nity.

Since values were updated during this backup, the algorithm has not necessarily yet

converged, and thus it will iterate again. As the k = 2 iteration, states adjacent to `-1'

valued states update to value `-2' and so on. Finally the value function converges after

the k = 3 backup, and the optimal and greedy policy in Fig. 3.1(b) at iteration k = 3

is returned. By following this optimal policy, an agent anywhere on the environment

can �nd its way to one of the goal states with an optimum number of action executions

(multiple arrows indicate equally good choices).

An alternative technique of value iteration is policy iteration. Policy iteration ini-

tialises a policy with random actions to perform from each state, and iteratively:

1. computes policy evaluation (a value function V π for the current policy π). This

step is itself an iterative method similar to algorithm 3.1 except for line 6, where

the action is chosen according to the current policy π rather than the action

which minimises the RHS expression,

2. uses V π to improve the policy π.

Several iterations many be required before an optimal policy is returned. Policy

iteration is, however, generally not as e�cient as value iteration due to the nesting

of the policy evaluation iteration within policy iteration [47]. Thus policy iteration is

not used in this thesis.

3.1.3 Sweeping

Algorithm 3.1 is correct and complete and guaranteed to converge in polynomial

time [38]. E�ciency for DP value function convergence is heuristically increased by

focusing on states whose values are frequently changing. For instance, if the value of

one state s′ is updated, the value of each state s that can transition to it (predecessor

states) may also need to be updated due to Eq. 3.1.1. Conversely, if no resultant

24 Background

states s′ transitionable from state s updated their value in the previous backup,

there is no need for s to update. Thus, value propagation can still be achieved

without updating every state's value during each backup, rather only the predecessor

states whose resultant state's values did change on the previous iteration. This more

selective process is referred to as sweeping. This is implemented using a queue shown

in Algorithm 3.2.

Algorithm 3.2: Dynamic programming: Value evaluation by sweeping
1: queue.push(∀ state ∈ GoalStates)
2: while queue 6= ∅ do
3: supdated = queue.pop()
4: if queue.contains(supdated) then
5: continue
6: end if
7: for ∀ a ∈ Actions do
8: for ∀ s ∈ supdated.getPossiblePredecessors(a) do
9: v =←

∑
s′ P (s′|s, a)[R(s′, s, a) + γV (s′)]

10: if v > V (s) then
11: V (s)← v
12: queue.push(s)
13: end if
14: end for
15: end for
16: end while
17: Output: π∗(s) = arg maxa

∑
s′ P (s′|s, a)[R(s′, s, a) + γV (s′)]

Prioritised Sweeping uses a priority queue in Algorithm 3.2. As the change in value

in some updates will be greater than others, and a large change in value is more

`relevant' in value propagation than small updates, associated predecessor states can

be updated in an order which is prioritised according to the magnitude of this change.

3.2 Gaussian Processes

This thesis makes use of Gaussian process regression for learning-based mobility pre-

diction. GP theory is introduced in this section, though is covered in much greater

3.2 Gaussian Processes 25

detail in [45]. As mentioned previously in Sec. 2.3, GPs have the advantage over para-

metric models that they makes fewer assumptions about the complex environment-

robot interaction. In addition, GPs are used in this thesis as they are adept at

providing predictions with uncertainty given sparsely populated, spatially correlated

data. Thus, control uncertainty (the DP stochastic transition function) can be mod-

elled directly with PDFs the GP predicts, relying on limited training data which may

only form a small subset of the many possible terrain formations the rover could

encounter.

3.2.1 Model

A GP is a statistical modelling tool used in supervised learning to perform regression

and classi�cation. GPs are a standard framework to learn a model of correlated data

and to provide inference with uncertainty. Uncertainty distributions are modelled as

Gaussian probability distributions.

GP regression is concerned with exploiting the relationship between training input

data X and training output data Y to model the correlations between the output

values given di�erent inputs. As such, a new test input vector x∗ (or `covariates') can

be used to predict a test output y∗. Many other regression methods �t arti�cially-

selected functions to data (e.g. a cubic polynomial) to model a relationship between

inputs and outputs, with a focus on training free-parameters within such a function,

optimising for Root Mean Square error of the test datum. However, it is often the

case that there exist multiple functions which describe such a relation well, or perhaps

there is not enough test data to justify why one candidate function should be used and

others discarded. GPs, by contrast, can be thought of as a probabilistic distribution

over the functions that describe the relation Y = f(X).

A GP is speci�ed by a mean and covariance function. The covariance function de-

scribes how one observation is associated (or correlated) with another observation.

Typical covariance functions would have high correlation of outputs between two test

datum that are similar, and small correlation between two test datum that are very

26 Background

di�erent. Covariance functions have free-parameters to de�ne, called hyperparame-

ters, represented by Θ.

The observed outputs di�er from the underlying function by additive noise w of mean

zero and variance σ2
n: y = f(x) + w, where w ∼ N (0, σ2

n). σ2
n represents the noise in

the observation of the output. The covariance function between two inputs is given

by: cov(xi, xj) = k(xi, xj) + σ2
n. Here, the covariance function cov is composed of an

underlying a covariance function between inputs.

A common choice of covariance function used to describe the spatial correlation be-

tween two input vectors is the squared exponential:

k(x,x′) = σ2
f exp

(
− 1

2
(x− x′)>Λ−2(x− x′)

)
+ σ2

nI, (3.2.1)

where σ2
f is the input variance (noise expected in observing the input data) and Λ

is a length scale matrix of diagonal elements that describe the smoothness of the

data or how `fast' the covariance decays as the distance between inputs increases.

These parameters comprise the hyperparameters for the squared exponential covari-

ance function: Θ = {σf ,Λ, σn}.

3.2.2 Inference

The predictive distribution is given by a Gaussian,

p(f∗|X, Y,x∗) ∼ N (µ∗,Σ∗), (3.2.2)

with predictive mean

µ∗ = K(x∗, X)[K(X,X) + σ2
nI]−1Y, (3.2.3)

and variance

Σ∗ = K(x∗,x∗)−K(x∗, X)[K(X,X) + σ2
nI]−1K(X,x∗), (3.2.4)

3.2 Gaussian Processes 27

where X is the n×m matrix of all n training input vectors, each of dimension m, Y is

the n× 1 vector of all training output (scalar) values, and x∗ is the test input vector.

K(X,x∗) is the covariance matrix which stores the covariance of each training input

value against the test input values.

Training a GP is to de�ne (or learn) the hyperparameters of the covariance function.

This is often referred to as model selection. A standard method to compute hy-

perparameters involves assessing the likelihood of the observations, given the inputs

and hyperparameters. This is called the marginal likelihood, though the log of the

marginal likelihood is often used:

log p(Y |X,Θ) = −1

2
Y >K−1Y Y − 1

2
log|KY | −

n

2
log 2π, (3.2.5)

where KY = Kf + o2nI.

A natural choice of hyperparameters are those which best describe why the outputs

Y were observed. This is done by computing the likelihood of observing the training

outputs given the hyperparameters. We wish to solve for the hyperparameters Θ by

maximising the log p(Y |X,Θ) term in Eq. 3.2.5. by gradient decent. Unfortunately,

this optimisation problem is often not convex1, however local optima solutions are of-

ten adequate. The partial derivatives of Eq. 3.2.5 with respect to the hyperparameters

used for gradient decent are:

∂

∂Θi

log p(Y |X,Θ) =
1

2
tr
(

(ββ> −K−1) ∂K
∂Θi

)
, (3.2.6)

where β = K−1Y . Various methods used for adapting the step size and stopping

criteria during decent exist. This thesis uses the implementation by [45] which uses

the slope ratio and Wolfe-Powell stopping criterion.

As found in Sec. 2.2, uncertainty that exists in di�erent subsystems of a rover's

framework deteriorate the performance of a motion planner in a real environment.

1If a function is not convex, then local optima computed by gradient decent of such a function
are not guaranteed to be the global optima of the function.

28 Background

Compared to an idealised motion planner in a simulated environment, some of this

deterioration is inevitable, but much can be mitigated by explicitly addressing how

to plan motion given these sources of uncertainty. As GPs are adept at providing

predictions with uncertainty given sparsely populated, spatially correlated data, they

are useful tools for learning and modelling di�erent sources of uncertainty given ad-

equate training data. As DP can utilise such predictions to quantify state-transition

probabilities (control uncertainty) explicitly in planning, a natural framework using

DP and GPs together can be constructed to allow a rover to learn from and plan

motions according to the uncertainty of its controls.

Chapter 4

Motion Planning and Learned

Control Uncertainty

With the aim of reaching a given goal region safely while optimising the total cost

of traversal over the executed trajectory, our approach is to take into account the

stochasticity of the control of the robot at the planning stage. This requires modelling

the control uncertainty, which we achieve by experience, using machine learning. This

section �rst presents our model of control uncertainty (Sec. 4.1), followed by the

presentation of the learning technique used to train our model of control uncertainty

(Sec. 4.2). The motion planning algorithm, which uses the trained uncertainty model

to compute a motion policy rather than a single path, is then discussed (Sec. 4.3).

Finally, an overview of the complete system is given (Sec. 4.4). Later, Chapter 5

details the implementation details which are speci�c to our test platform.

4.1 Control Uncertainty

Control uncertainty is modelled as a PDF of relative transition between states p(∆s|s, a).

p(∆s|s, a) can be expressed using P (s′|s, a) where ∆s ≡ s′ − s:

P (s′|s, a) =

∫
p(∆s|s, a)f(s+ ∆s, s′) d∆s, (4.1.1)

30 Motion Planning and Learned Control Uncertainty

where f(s1, s2) =

 1 if the discretisation of s1 corresponds to s2

0 otherwise

p(∆s|s, a) comprises our model of stochastic actions and is tied to observed environ-

mental features that vary across the terrain and is learned through experience. In

addition, p(∆s|s, a) is assumed to be a Gaussian for the purposes of training, discussed

below. This assumption was found to be reasonable empirically (see Fig. 6.1 and 6.2)

4.2 Learning-based Mobility Prediction

The stochastic transition function P (s′|s, a) in Eq. 3.1.2 is not known a priori and

requires empirical calibration. This section describes how relative state transitions

(speci�cally p(∆s|s, a)) are learned from experience.

The estimation of relative change in state is achieved using Gaussian process regres-

sion. As described in Sec. 3.2, GPs are e�ective in cases where the input data is

sparsely populated and spatially correlated. This is the case for our data. An ad-

vantage of using regression opposed to classi�cation to predict motion is two-fold.

Firstly multiple models are not required, one for each terrain classi�cation. Second,

information otherwise discarded during a classi�cation process is instead included in

the learning of control uncertainty. This is especially useful when a robot considers

mobility on terrains that lies close to a classi�er's decision boundaries.

In unstructured terrains, ∆smay strongly depend on factors such as the terrain pro�le

along the executed path and also the action executed. A complete terrain pro�le, as

a subset of the elevation map or sensed proprioceptively continuously during action

execution, contains too much information such that it would over�t the learning

algorithm if input directly. For example, the concerned subset of the elevation map

comprises all elevation cells traversed by each wheel. In our implementation (see

Chapter 5), we have a: 2.5cm state discretisation, 30cm crab actions, and 6 wheels.

This means there are approximately 72 elevation cells the rover traverses during an

4.2 Learning-based Mobility Prediction 31

action primitive. In this case, the input dimensionality (72) exceeds the training

set size for any particular action (Table. 6.1), therefore it is unsuitable for learning.

Thus, a smaller number of single-valued features or characteristics (functions) of the

terrain pro�le are extracted for learning. A trivial choice of features may be those

that down-sample this subset, or represent a coarser discretisation of the terrain

pro�le. However, since this choice of functions is in no way related to the particular

environment-robot interaction, there is no guarantee this dimensionality reduction

would retain the relevant information to e�ectively predict motion. Terrain pro�les

are represented by a vector of features:

λ(s, a) = {λ1(s, a), ..., λDim(λ)(s, a)} (4.2.1)

where each feature λi(s, a) is a function of a state-action pair, as state-action pairs

identify the expected terrain pro�le with reference to the elevation map. The aim

is that the information content of λ(s, a) should be neither too low nor too high for

e�ective learning and that no pair of functions (λi, λj) be too strongly correlated

(to avoid unnecessary redundancy in the learning). Good choices for candidate λ

functions to test are those which can distinguish between situations where the robot

would be more prone to slipping or have trouble climbing over a rock, with say hard

�at terrain where the rover might have very little stochasticity in control. Therefore,

p(∆s|s, a) is learned as a function of λ(s, a) and a:

p(∆s|s, a) = p(∆s|λ(s, a), a). (4.2.2)

We use the GP formulation from [45]. The input vector x is a function of the terrain

features, shifted such that the input has zero mean, i.e., x = λ− λ̄train, where λ̄train
is the mean of each terrain feature in the training data. We de�ne ∆si,a as the ith

single-valued component of the change of state ∆s resulting from executing action a.

We de�ne a GP for each ∆si,a, i ∈ [[1, N]], a ∈ A, where N = Dim(s). The output

value yi,a of one of these GPs is de�ned as yi,a = ∆si,a − ¯∆si,a, where ¯∆si,a is the mean

value of ∆si across all executions of action a in the training data. yi,a = fi,a + wi,a

32 Motion Planning and Learned Control Uncertainty

has a zero mean and variance σ2
n equal to the variance of the additive noise wi,a, i.e.,

p(yi,a|fi,a) = N (0, σ2
n).

The covariance function used to describe the spatial correlation between two input

vectors is the squared exponential (Eq. 3.2.1). Using Eq. 3.2.2, the predictive distri-

bution is:

p(∆si,a|λ(s, a))− ¯∆si,a = p(f∗|X, Y,x∗) ∼ N (µ∗,Σ∗), (4.2.3)

with predictive mean µ∗ and variance Σ∗ are given by Eq. 3.2.3 and Eq. 3.2.4.

Thus, p(∆si,a) is to be computed for untraversed terrain pro�les using Eq. 4.2.3,

where the test input vector x∗ has not been observed directly but rather estimated.

Estimation employs a kinematics model of the robot over the series of states that

would be traversed by executing action a from state s.

Finally, our planner considers the uncertainty in each component ∆si separately by

using the full distribution learnt from ∆si and the expectation of the other compo-

nents. Representing λ(s, a) as λ, Eq. (4.2.2) is calculated as:

p(∆s|λ, a) = p({∆s1, ...,∆si, ...,∆sN}|λ, a) ≈

{E(∆s1|λ, a), ..., p(∆si|λ, a), ...,E(∆sN |λ, a)}. (4.2.4)

4.3 Motion Planning

We compute a motion policy for the robot using dynamic programming. A policy

can be viewed as a representation of least cost paths from every state to the goal.

In contrast to a computing a single path from a given state, a policy is a means

to compute which control action to take at every state in the state space. The

choice of DP includes computation of a motion policy to direct the robot towards

a goal region, which is optimal with respect to the discretisation of the state-space,

discrete set of (stochastic) primitive motions the robot has available and the reward

function [35]. Grid search algorithms such as A* can also achieve this, however, as DP

incorporates knowledge of control uncertainty explicitly during the development of

4.4 System 33

the path, the expected total cost of traversal is additionally optimised with respect to

our uncertainty model (Sec. 4.1). Finally DP computes a motion policy rather than

a single path, which is relevant to this context given that the robot will inevitably

deviate form the intended path.

As part of the choice of DP we have assumed accurate localisation and stochastic

control. In practice, localisation can be considered as accurate enough as long as its

error is at most comparable to the state discretisation. DP is a feasible method in

low dimensional state spaces; in our problem the state s can be de�ned using two

lateral dimensions x and y and one dimension for orientation ψ, i.e., s = {x, y, ψ}.

The motion policy is computed using DP with sweeping (see Sec. 3.1.3) where the

state s de�nes the robot state (discretised into uniform cells), each action a in A is

a short motion primitive, and the discount factor γ = 1 to ensure expected time to

goal does not in�uence the safety of the platform. The reward function R(s′|s, a) is

computed from a cost map which represents the di�culty of traversal at each state

in the terrain. Predictions of control uncertainty P (s′|s, a) are computed by using

regression on a trained GP as described in Sec. 4.2.

This choice of MDP, outlined in Sec. 3.1, is not a risk sensitive MDP, thus our motion

planner is not risk adverse nor risk prone per se, rather it optimises for the average

value of resultant state plus traversal cost, weighted by the probably of arrival, in

selecting subsequent action commands. As such, the motion planner will still avoid

dangerous regions when there is a reasonable probability it will transition there,

though it is not adverse to high levels of control uncertainty when far from danger.

4.4 System

Fig. 4.1 shows an outline of the system. Once an elevation map of the robot's local

environment has been computed, a kinematics model is used to estimate both the

terrain pro�le characteristics and cost of traversal (R(s′, s, a)) at each state-action

pair. Characteristics of the terrain pro�le, as observed by the Inertial Measurement

34 Motion Planning and Learned Control Uncertainty

IMU Loc.

Learning
Cov. Matrix

Comp. Elevation Map

Kinematics Model

GP Comp. Rewards

Motion Planning

3D pointcloud

elevation map

feature map cost map

P(s'|s,a) R(s'|s,a)

covariance
matrix

actions (output)

goal (input)

localisation

(offline learning)

Figure 4.1 � System Outline. Colours indicate perception (red), o�ine learning (yel-

low), estimation (blue) and planning (green).

Unit (IMU) and the localisation system, are used as input data to train the GP o�ine.

The GP can then be used to estimate the stochastic transition function P (s′|s, a)

on terrain similar to that encountered during training. Using both P (s′|s, a) and

R(s′, s, a), the motion planner computes the value function (Eq. (3.1.1)) over the

observed state space to follow greedily as per the policy given in Eq. (3.1.2).

Chapter 5

Implementation

This section describes the implementation of the proposed approach on our experi-

mental Mars rover shown in Fig. 5.1(a).

5.1 The Environment

All experiments described in (Chapter 6) were conducted in the Mars Yard environ-

ment shown earlier in Fig. 1.1, at the Powerhouse Museum in Sydney Australia. This

environment is 117m2 in area and was designed to reproduce typical Mars terrain.

It contains rocks of various sizes, small craters, and various grades of sand, dirt and

gravel.

5.2 The Robot

�Mawson� is a six wheeled rover with individual steering servo motors on each wheel

and a Rocker-bogie chassis. The platform is equipped with:

• an RGB-D camera (Microsoft Kinect) mounted on a mast, tilted down 14°, used

for terrain modelling and localisation,

36 Implementation

(a) Mawson

α

ϕ

θ 1

α2

α4

α3

front

rear

ψ

(b) Orientation and Internal angles

Figure 5.1 � The Mawson Rover (a) and its chassis con�guration (b).

• a 6-DOF IMU (Sparkfun Razor IMU, includes 3 accelerometers and 3 gyro-

scopes) used to measure the roll (φ) and pitch (θ) only of the robot,

• three potentiometers to observe the con�guration of the chassis by measuring

both bogie angles and the rocker di�erential (αi in Fig. 5.1(b)).

The IMU does not require initialisation because only relative changes in pitch and

roll during an action primitive are used for learning, described in Sec. 5.5.1. Absolute

values of pitch and roll are not used directly. Similarly, the system is also robust

against long-term drift in the values of pitch and roll.

For localisation and terrain modelling we use the RGB-D SLAM algorithm [13], im-

plemented in the Robot Operating System (ROS) [14], which uses data from the

RGB-D camera to perform simultaneous localisation and mapping (SLAM) online.

An elevation map is generated from the point clouds supplied by the RGB-D camera

by distributing elevation points in a regular Cartesian grid. The grid resolution is

0.025m × 0.025m. This decision was based on a lower bound of the resolution,

5.3 Kinematics Model 37

according to the point cloud density the sensor provided, approximately 1 − 2cm

between points at a range of 6m from the sensor. A soft upper bound is the contact

area the wheel forms with the terrain, approximately 0.05m× 0.05m, to provide the

kinematic model with the most accurate data possible to predict motions.

5.2.1 Localisation Accuracy

Test were conducted to determine accuracy of RGB-D SLAM localisation estimations

in the Mars Yard environment. Various motion primitives (detailed in Sec. 5.4.2) were

trialled including forward, backward and sideways translations, and rotations. Typi-

cal distance and yaw errors of RGB-D SLAM over 10m traversals are on average 9.7

cm and 0.069 radians [13]. Distance errors in the alternative InterSense localisation

system used in one test (described in Sec. 6.4) was found empirically to be approx-

imately 3cm. Neither localisation system used odometry information nor a system

model, and thus any slip of the wheels did not contribute to localisation inaccuracy.

5.3 Kinematics Model

A kinematics model is used to estimate how the platform would interact with its

environment. This section �rst describes an algorithm to estimate the con�guration

of the platform's Rocker-bogie chassis on an elevation map in Sec. 5.3.1. Estimation

of terrain pro�le characteristics λ(s, a) using this algorithm is presented in Sec. 5.3.2.

Finally, the di�culty of traversability of a state (cost function) in the elevation map

is computed using the kinematics model, de�ned in Sec. 5.3.3.

5.3.1 Predicting attitude angles and chassis con�guration

To predict the attitude angles {φ, θ} and chassis con�guration {α2 − α1, α3, α4}
(Fig. 5.1(b)) of the rover at given (x, y, yaw) positions on the elevation map, we

use a method similar to [8] con�gured to Mawson's physical parameters. Although it

38 Implementation

front

rear

n4

n2

n3

n1

w6

w3

w2

w1w5

w4

L4

L3

L2

L6

L5

L1

Figure 5.2 � Rover's Kinematic Structure: The rover is modelled with four nodes (pin

joints) and six wheels.

does not take into account the dynamics of the platform, this simpli�ed model is a

su�cient approximation since the rover operates at low speeds.

The kinematic model of the rover is based on the pin-joint model in Fig. 5.2, which

includes four pin-joint nodes that can freely rotate and six contact points (wheels) that

rest on the surface of the elevation map. Wheel shape is not included in the model;

the point of contact between a wheel and the elevation map is approximated as the

base of the wheel. As such, local deformations of both the wheel and terrain caused

by wheel/terrain interactions are not modelled. This approximation is justi�ed in this

approach as long as vertical displacements of wheels caused by terrain deformations

are dominated by vertical displacements caused by a wheel climbing over rocks. In

addition, variation in wheel height, compared with the measurements taken of wheel

heights on �at terrain, are required to be small. Both of these have been the case in our

training and testing. Another consequence of wheel size when traversing jagged edges

is the ability to `smooth out' vertical deviations of the wheel, which have thus been

ignored. However, these errors experienced during testing were also small, plus the

localised smoothing e�ects do not e�ect how the terrain characteristics are computed

(Eq. 5.5.2 - 5.5.5). This is thus a simplistic model, but realistic enough for our

purposes. An iterative process is used to increment or decrement robot attitude

5.3 Kinematics Model 39

angles {φ, θ} and pin-joint rotations {α1, α2, α3, α4}. During each iteration, wheel

positions are calculated according to these values, and each wheel's height above the

elevation map is used as an error term in the following iteration to adjust orientations

and pin-joint rotations further. Convergence of {φ, θ, α1, α2, α3, α4} is achieved when

each wheel's height above the elevation map is less than 1cm.

The algorithm is a single-loop function. It commences with each angle φ, θ, α1, α2, α3, α4

initialised to zero. Let hi represent the elevation of the (simulated) wheel minus the

elevation of the map at the same x-y location. The iterative process follows:

• The rover is `lowered' onto the elevation map by the minimum hi value, so that

at least one wheel will be in contact with the elevation map, the other wheels

will have non-negative hi values:

[h1, ..., h6]→ [h1, ..., h6]−min(h1, ..., h6)

• The pitch θ of the rover is then corrected (Fig. 5.3(a)) such that the average hi

value of the front wheels is equal to that of the rear wheels:

θ → θ − asin
(

h1+h4
(h3+h6)(L4+L2/2)

)
• The roll φ of the rover is then corrected (Fig. 5.3(b)) such that the average hi

value of the right-side wheels is equal to that of the left-side wheels:

φ→ φ− asin
(

h1+h2+h3
(h4+h5+h6)(L6)

)
• The Rocker's right pin-joint is corrected such that the h1 value of the front-right

wheel is equal to the average of the right-bogie wheels:

α1 → α1 + asin
(

2h1
(h2+h3)(L4)

)
• The Rocker's left pin-joint is similarly corrected:

α2 → α2 + asin
(

2h4
(h5+h6)(L4)

)
• The right-bogie pin-joint is corrected such that h2 and h3 of the right-bogie

wheels are equal:

α3 → α3 + asin
(

h2
h3L2

)

40 Implementation

• The left-bogie pin-joint is similarly corrected:

α4 → α4 + asin
(

h5
h6L2

)
This loop exits when the all hi values are less than 1cm. An exception is if a asin()

function returns NaN which means not all six wheels would in contact with the ele-

vation map at this (x, y, yaw) location. In this case the state is marked as an obstacle

and the motion planner will not plan through it. Pseudocode of the kinematics model

is presented in appendix A.2.

Before Pitch Corrected

h3

h1
h1

(a) Pitch correction: from the right-side of view of the rover, an iteration of the
kinematics model algorithm corrects the rover's pitch.

Roll CorrectedBefore

h3

h6

h3

(b) Roll correction: from the rear view of the rover, an iteration of the kinematics
model algorithm corrects the rover's roll.

Figure 5.3 � Kinematics model algorithm

5.3.2 Feature Map

Given an elevation map and a method to predict attitude angles and chassis con�g-

uration angles, a feature map is computed. This maps states-action pairs to charac-

teristics of the expected terrain pro�le encountered (Eq. 5.3.1). The terrain pro�le is

represented by the evolution of rover con�guration angles as estimated by the kine-

matics model. Thus, for any state-action pair, a corresponding value of λ(s, a) is

5.3 Kinematics Model 41

Figure 5.4 � Rover simulated on a terrain model using the kinematic model.

42 Implementation

stored, used as test input data for the GP to predict mobility:

featureMap : {S,A} → λ(S,A) ⊂ RDim(λ). (5.3.1)

λ(s, a) is estimated for each (s, a) pair by �rst assessing the expected terrain pro�le

the rover would traverse. This is computed as a linear interpolation between the

start state `s' and the the expected resultant state E(s′|s, a). The kinematics model

is used to estimate rover attitude angles and pin-joint rotations at states along this

line, giving a sequence of expected con�gurations along the motion primitive. This

sequence, representing the terrain pro�le, is used as input into λ, discussed further

in Sec. 5.5.2.

5.3.3 Cost Map

The cost function chosen to generate the cost map from the elevation map penalises

large absolute values of roll, pitch, and con�guration angles of the chassis at a given

position s = {x, y, ψ}:

costterrain(s) = (costφθ(s) + costα(s))2, (5.3.2)

where:

costφθ(s) = (φ2 + θ2), (5.3.3)

costα(s) = (α2 − α1)
2 + α2

3 + α2
4. (5.3.4)

The (α2 − α1) term is used as only the di�erential of the rocker can be measured.

Since the con�guration of the robot at a given position on the elevation map depends

on its orientation, a 2D (x, y) cost map needs to be generated for each discretised

orientation. The result is a 3-dimensional (x, y, ψ) cost map. The cost function was

derived empirically by noting the di�culty of the platform in climbing di�erent sizes

of rocks.

5.4 Planning 43

5.4 Planning

This section describes how the motion planning algorithm of Sec. 4.3 is implemented.

This includes how the state space, action space and reward function have been de�ned,

speci�c to our test platform. Full pseudocode is available in appendix A.1.

5.4.1 State Space

As mentioned in Sec. 4.3, the rover's state s is de�ned as its position and orientation:

s , {x, y, ψ} ∈ R3, (5.4.1)

where x and y are orthogonal lateral dimensions in meters, and ψ represents yaw in

radians. This de�nition speci�es all other orientations and internal angles φ, θ, α at

each state using the kinematics model. State resolution was required to be smaller

than the uncertainty bounds of resultant positions of actions in order for uncertainty

to be considered by the DP1. A discretisation of 0.025m×0.025m× π
32
rad is su�cient

in which actions could result in one of multiple distinct states. The discretisation was

determined empirically using the standard deviation of errors of heading and yaw

from actions listed in Table 6.1. This equates to approximately two to �ve possible

resultant states considered for each state-action pair.

The point position {x, y} refers to approximately the rover's centre of rotation. The

centre of rotation lies 13mm from the rover's line of symmetry, to the right when

rotating clockwise, to the left when rotation anti-clockwise, due to the front wheel's

motors being more powerful and a forward centre of gravity. Thus, the rover would

`drag' the platform slightly when rotating. The robot's point position is de�ned as

the midpoint between these two centres of rotation.

1If the state discretisation dominates the range of resultant positions such that within two
standard deviations all possible resultant positions computed lie within the same state discretisation,
then the planning is e�ectively deterministic. In this case information about the uncertainty of a
motion primitive is lost.

44 Implementation

5.4.2 Action Set

We de�ne two action types for the rover: crabbing and rotation. Crabbing corre-

sponds to executing a straight line translation in the xy-plane by a given distance

and heading, with no change in ψ, and constant linear velocity (0.11m/s). The rover

is able to crab in any direction. Rotation is a spin-on-the-spot motion primitive at

constant angular velocity (0.24rad/s). It only changes ψ by a given magnitude. In

total, the action set A is composed of 2 rotation and 8 crabbing motion primitives:

A ,
{
rotate (π/4) , rotate (−π/4) ,

crab (0.3m,nπ/4) ∀n ∈ [[−3, 4]]
}
. (5.4.2)

Restricting the actions to this set was the result of a trade-o� between rover dexterity

and algorithm complexity. A discrete set is used, rather than continuous, as the

motion planning task in the MDP environment is not convex and cannot be solved by

gradient descent. The set was chosen empirically with su�cient actions to achieve a

suitable level of path diversity. However, the number of actions was limited to 10 to

bound the training set size required (independent training is required for each action)

and also limit the number of actions assessed at each state during planning. A single

speed was chosen to limit what needed to be learned.

5.4.3 Reward Function

The reward R(s′, s, a) of an action is de�ned as the negative of the average cost of

states that lie on a linear interpolation between a start state s and a resultant state

s′:

R(s′, s, a) = −ξ − 1

K

K∑
i=0

Cost
(
sx +

i

K
(s′x − sx),

sy +
i

K
(s′y − sy), sψ +

i

K
(s′ψ − sψ)

)
, (5.4.3)

5.5 Learning and GP 45

where ξ = 0.003 is a small penalty used to deter excessive motions on �at terrain,

and K is the sampling resolution.

5.5 Learning and GP

To achieve mobility prediction from training data, we used the GP implementation

from [45]. The approach was �rst tested on �at terrain which consisted of �at sand

and large rock obstacles to avoid. This was intended as a preliminary trial of the

approach before extending training and testing to `rough terrain'. Rough terrain

tests used rocks of di�erent sizes, a subset of which were small enough to not be

classed as obstacles by the kinematics model, and could be traversed.

5.5.1 Training

Training data were obtained through experimental runs of the rover executing each

action a from A multiple times, while logging discretised sets of {α, φ, θ, time, s, a}
continuously. The training data collected comprise the rover's attitude angles, pro-

vided by the on-board IMU, and the deviation from the expected motion when exe-

cuting a given action, measured using the localisation system. Due to the left-right

symmetry of the platform, training was only required on 6 of the 10 actions from

A (Fig. 6.1 shows which set of training data can be combined between symmetric

actions).

Due to slow localisation updates, ∆s could only be measured at the end of each action

primitive. However, multiple values of {φ, θ, α} were recorded during the execution

of an action primitive, resulting in a vector of these values {φ,θ,α}, representing the
terrain pro�le.

Flat terrain: In �at-terrain traversal, variations of {φ,θ,α} was negligible, there-
fore, motion errors were learnt with respect to action only. As both the input and

46 Implementation

output were uni-dimensional, basic mean and variances of motion errors are computed

for each action, rather than using a GP.

Rough terrain: Terrain pro�les were encoded more compactly by extracting fea-

tures of the evolution of {φ,θ,α} to limit training data dimensionality, and thus

avoid over�tting. A combination of terrain pro�le features were tested with GP re-

gression using cross validation. The features (vector of functions λ) which produced

the lowest Root Mean Square error between the GP mean estimations and test datum

output was chosen:

λ , {λ1, λ2, λ3, λ4}, (5.5.1)

where

λ1(φ,θ) = max(φj − φi), ∀i, j : i < j, (5.5.2)

λ2(φ,θ) = min(φj − φi), ∀i, j : i < j, (5.5.3)

λ3(φ,θ) = max(θj − θi), ∀i, j : i < j, (5.5.4)

λ4(φ,θ) = min(θj − θi), ∀i, j : i < j, (5.5.5)

i.e., largest increase of φ, largest decrease of φ, largest increase of θ and largest

decrease of θ during an action primitive. α did not improve predictive results of the

GP, and thus was not included.

5.5.2 Prediction

When planning over previously untraversed states, φ and θ are estimated using the

kinematics model from a state-action pair: φ̂(s, a) and θ̂(s, a). The λ functions are

then applied to these estimates, which are input to the GP. Thus, the expression

p(∆si|λ(s, a), a) = p(∆si|λ(φ̂(s, a), θ̂(s, a), a))

is substituted in Eq. (4.2.4).

5.6 Discussion 47

φ̂(s, a) and θ̂(s, a) are computed using the expected sequence of states s traversed

by (s, a) as the linear interpolation of states between the start state `s' and the

expected resultant state E(s′|s, a). For each interval state si in s, the kinematics

model computes an associated φi and θi value in φ̂ and θ̂.

5.5.3 Outputs

The components ∆si of ∆s (see Sec. 4.2) were de�ned according to radial coordi-

nates, as per the control space of crabbing and rotations, opposed to the Cartesian

representation of the state space {x, y, φ} itself. The ∆si components we consider are

heading and distance travelled for crabbing actions

∆s1 = ∆shead = atan2(∆y,∆x) (5.5.6)

∆s2 = ∆sdist =
√

(∆x)2 + (∆y)2, (5.5.7)

and yaw for rotation actions

∆s3 = ∆syaw = ∆ψ. (5.5.8)

Therefore, ∆s is represented by the tuple

∆s , {∆shead,∆sdist,∆syaw}. (5.5.9)

5.6 Discussion

Uncertainty of the resultant state has several causes including imperfect actuation, un-

detectable properties of observed terrain, and an inability to perfectly model terrain-

robot interaction. Slippage on sandy terrain, terrain deformability, di�ering power

requirements to climb di�erent rocks are factors which are not modelled explicitly,

but correlate with the terrain pro�le features learned, and thus implicitly captured

in the training data. Training and testing was restricted to non-sloping terrains to

48 Implementation

limit the complexity of the scenarios. Whilst this does not encompass all scenarios

expected on a Mars terrain, sloping terrains are left to future work.

In the rest of the thesis, we de�ne control errors (δs) similarly to slip [3] as the

di�erence between observed change in state (∆s) and �ideal� change in state (∆̃s)

(i.e., if the controller followed the action-command perfectly); i.e., δs = ∆s − ∆̃s, a

tuple analogous to Eq. (5.5.9).

Chapter 6

Experimental Results

We evaluated our approach both in simulation and through experiments with a plan-

etary rover robot. Our experimental methodology consisted of two phases. First, we

learned statistics of control error through empirical trials, described in Sec. 6.1. Then,

we performed navigation experiments using these learned data to build the motion

planner's stochastic transition function. Sec. 6.2 describes experiments in simulation,

and Sec. 6.3 and 6.4 describe experiments using the robot.

6.1 Training on Flat and Rough Terrain

Training was conducted for two cases: �at-terrain traversal and rough-terrain traver-

sal. For the �at terrain case, control errors were learned by executing multiple runs for

each action. Rough-terrain training additionally involved traversal of various rocks

(one at a time).

Statistics on these error terms of the training data obtained (before GP estimation)

for δshead and δsyaw are shown in Table 6.1. In particular, this table indicates the

mean and standard deviation (std.) of the error for each action.

50 Experimental Results

Table 6.1 � Mobility Prediction by action, GP features not included

Action: crab
0π

crab
±π/4

crab
±π/2

crab
±3π/4

crab π rotate
±π/4

Error: δshead δshead δshead δshead δshead δsyaw

Flat Terrain
mean (rad) 0.043 0.028 0.004 0.006 0.058 -0.117
std. (rad) 0.074 0.103 0.127 0.091 0.088 0.140
samples 15 34 39 34 12 32
Rough Terrain - marginalised by Action
mean (rad) 0.044 0.010 0.060 0.037 0.037 -0.063
std. (rad) 0.081 0.115 0.158 0.117 0.089 0.119
samples 43 58 58 48 35 54

6.1 Training on Flat and Rough Terrain 51

6.1.1 Flat Terrain Training

Training data included 166 motion primitive executions (approximately 28 motions

per symmetric action), recording IMU values and localisation data. The heading

errors (δshead) and yaw errors (δsyaw) learned for each of the six symmetric actions

are shown in Fig. 6.1. Mean and variance were computed directly for �at terrain

learning rather than using GPs because the input data (the action executed) was one

dimensional. Although the terrain was mostly �at, the variance in motion primitive

error is signi�cant, which validates the need to take uncertainty into account in the

planning. We found that the distributions could reasonably be approximated by a

Gaussian.

(a) Crab(0.3m, 0π) (b) Crab(0.3m, ±π
4) (c) Crab(0.3m, ±π

2)

(d) Crab(0.3m, ± 3π
4) (e) Crab(0.3m, π) (f) Rotate(±π

4)

Figure 6.1 � Mobility prediction by action on �at terrain. Histograms present heading

errors recording during crabbing, and yaw errors recorded during rotations.

6.1.2 Rough Terrain Training

During rough-terrain traversal, various rocks were traversed by each wheel of the

rover. Note that in some cases some rocks shifted under the weight of the rover,

slightly sinking into the sand or rolling over. These types of situations, which are ex-

52 Experimental Results

tremely di�cult to predict by modelling, were therefore captured in our learning data.

As expected, Table 6.1 and Fig. 6.2 shows the control errors were more signi�cant in

rough terrain data.

(a) Crab(0.3m, 0π) (b) Crab(0.3m, ±π
4) (c) Crab(0.3m, ±π

2)

(d) Crab(0.3m, ± 3π
4) (e) Crab(0.3m, π) (f) Rotate(±π

4)

Figure 6.2 � Mobility prediction by action on rough terrain. Histograms present head-

ing errors recording during crabbing, and yaw errors recorded during rotations.

Table 6.2 shows the GP hyperparameters obtained. A visual example of the terrain

characteristics used in GP training (Eq. 5.5.2-5.5.5) traversing up and over a small

rock is shown in Fig. 6.3.

Training data included 296 motion primitive executions (approximately 50 motions

per symmetric action). The time to computing terrain features of all 296 motion

primitives and train all 18 GPs (Eq. 4.2.3) was 40 seconds. This was done o�ine on

an Intel Core 2 Duo 3.0GHz CPU with 4GB memory.

6.2 Simulation of Flat Terrain Traversal

We simulated the robot traversing �at terrain. A simulation was conducted to test

the planner more times than was feasible on the real terrain. Control uncertainty

was simulated using the learned data described in Sec. 6.1. The robot's environment

6.2 Simulation of Flat Terrain Traversal 53

Figure 6.3 � Example of terrain pro�le features. A set of features are computed

for an action primitive during training. Green: evolution of rover pitch during an

action primitive. Blue: evolution of rover roll. Black: lines indicating the maximum

increase and decrease of both roll and pitch during execution of the action primitive,

according to Eq. 5.5.2-5.5.5.

54 Experimental Results

(a) Simulated trajectories

(b) The real terrain

Figure 6.4 � (a) shows a few samples of simulated trajectories navigated around a

cluster of rocks (shown in (b)). The cost on the map is shown as levels of grey, with

white indicating the highest cost, for a single orientation value: the rover facing left.

The brown rectangle on the left indicates the common goal region. Red trajectories

were computed without considering uncertainty, while green trajectories considered

uncertainty.

6.2 Simulation of Flat Terrain Traversal 55

Table 6.2 � GP hyperparameters trained from traversals in rough terrain

Action Error Λ−211 Λ−222 Λ−233 Λ−244 σf σn

crab 0π δshead 0.010 0.103 0.223 0.015 0.070 0.032
crab ±π

4
δshead 0.246 0.198 0.230 0.019 0.000 0.073

crab ±π
2

δshead 0.004 0.016 0.071 0.022 0.049 0.044
crab ±3π

4
δshead 0.157 0.064 0.056 0.665 0.127 0.054

crab π δshead 0.029 0.057 0.198 0.066 0.000 0.043
crab 0π δsdist 0.098 0.143 0.034 0.232 0.000 0.028
crab ±π

4
δsdist 0.002 0.066 0.395 0.949 0.000 0.039

crab ±π
2

δsdist 1.555 1.664 0.855 0.021 0.032 0.035
crab ±3π

4
δsdist 0.215 0.001 0.051 0.188 0.000 0.034

crab π δsdist 1.981 0.590 0.099 0.025 0.087 0.039
rotate ±π

4
δsyaw 0.076 0.443 0.002 0.143 0.001 0.024

was simulated using a point cloud acquired by the robot's RGB-D camera. This

environment is a roughly �at area with a cluster of rocks, shown in Fig. 6.4(b). Trials

consisted of placing the robot randomly around the cluster of rocks and directed to a

unique goal region opposite the rock cluster. We used a cost function where any rock

on the terrain appears as an obstacle.

Planning without uncertainty (where the expectation of the change in state

E(P (∆s|λ(s, a), a)) learned is used instead of the full distribution) and planning con-

sidering uncertainty were each tested 100 times. When planning considering uncer-

tainty, the �at-terrain learning data was used, where ∆shead was considered during

crab actions, and ∆syaw was considered during rotate actions. Resultant trajectories

were assessed in light of the known ∆shead and ∆syaw distributions to determine the

probability of colliding with a rock as well as the expectation of accumulated cost

for each trajectory. Results obtained for both methods can be compared using the

statistics on all executed trajectories in Table 6.3. These statistics represent: the av-

erages of total cost accumulated from start position to goal costtotal, the probability

of hitting an obstacle summed over the entire trajectory Pcollision and the minimum

distance `Min. Dist.' to an obstacle over the trajectory.

costtotal is the sum of rewards (Eq. 5.4.3) between the sequence of states each recorded

56 Experimental Results

at the completion of an action, from state state s0 to �nal state sG, where G represents

the number of actions executed to reach the goal:

costtotal =
G−1∑
i=0

R(si+1, si, ai), (6.2.1)

where ai is the action executed from state si. Pcollision is computed using the learned

uncertainty in heading from Table 6.1:

Pcollision = 1−
G−1∏
i=0

∑
s′

P (s′, si, ai).isreal(R(s′, si, ai)), (6.2.2)

where the isreal() function returns false if any state sampled by the reward function

is invalid (an obstacle), true otherwise.

Table 6.3 � Simulated Planning around a Cluster of Rocks

No Uncertainty costtotal Pcollision Min. Dist. (m)
mean 1.132 0.028 0.154
std. 0.605 0.101 0.131
max. 6.879 0.68 0.530
min. 0.727 0 0.015
Head. Uncertainty costtotal Pcollision Min. Dist. (m)
mean 1.080 0.005 0.161
std. 0.138 0.035 0.113
max. 1.449 0.34 0.505
min. 0.733 0.0 0.025

Fig. 6.4(a) shows a few examples of trajectories executed. Holes present in the cost

map are considered obstacles: they are either states of �impossible con�guration�

where the kinematics model estimates the rover would not have all six wheels on the

terrain at that position, or occlusions due to shadow areas behind rocks where the

camera could not observe. By convention these obstacles are not considered as valid

states by the motion planner and it does not consider actions that may result in an

invalid state.

6.3 Experiments of Flat Terrain Traversal 57

Results in Table 6.3 highlight two of the major consequences of planning without

uncertainty: a platform will be more likely to collide with an obstacle and will, on

average, accumulate more cost in traversing to the goal region. In fact, when planning

without uncertainty, the projected accumulated cost will always be underestimated

when the robot deviates at least once from the lowest cost path it computes, which

is frequently the case with imperfect control. Thus planning without uncertainty

cannot provide any guarantee of total cost accumulated to reach a goal region, which

is important when a decision needs to be made regarding if a goal region is worth

visiting up to a certain cost of traversing there. The safety issue of rock collisions

occurs when the planner follows paths very close to an obstacle without considering

consequences of slight deviations from its path.

6.3 Experiments of Flat Terrain Traversal

We conducted a series of experiments using the physical robot traversing �at terrain.

The robot navigated from a starting position to a goal region whilst avoiding large

rocks (Fig. 6.5 shows the rover in the goal position). The terrain was �at sand

and gravel, however due to the imperfect control on the loose terrain, the control

uncertainties were signi�cant, as shown earlier in the training data in Sec. 6.1. We

used the same cost function as for the simulation (Eq. 5.3.2).

Trajectories were planned and executed on the robot 10 times for planning with uncer-

tainty (including heading during crabbing actions and yaw during rotation actions).

For comparison, 10 trajectories were also planned and executed without accounting

for uncertainty. In both cases, two di�erent starting points were used, while the goal

region was the same.

Fig. 6.6 shows a few examples of the actual trajectories executed by the rover. Occlu-

sions shown in the cost map in are due to �shadows� of rocks when they were observed

by the robot.

The results of planning with uncertainty of heading during crabbing actions and yaw

58 Experimental Results

Figure 6.5 � Flat traversal experiment, planning around a collection of rocks too large

to climb over safely.

6.3 Experiments of Flat Terrain Traversal 59

Figure 6.6 � Example of trajectories taken to avoid several rocks on otherwise �at

terrain. Red: without uncertainty considered. Green: with uncertainty in heading.

The starting position is indicated by the brown circle on the left and the goal region

is shown as the brown rectangle at the bottom right. Planning with uncertainty

generates paths that are less sensitive to control error.

60 Experimental Results

Table 6.4 � Flat traversal: probability assessment

No Uncertainty costtotal Pcollision Min. Dist. (m)
Trials: 10 Mean: 1.295 0.380 0.095
Collisions: 2 Std.: 0.385 0.492 0.084
Uncertainty costtotal Pcollision Min. Dist. (m)
Trials: 10 Mean: 1.177 0.016 0.165
Collisions: 1 Std.: 0.262 0.005 0.088

during rotation actions are compared statistically against results of planning without

uncertainty in Table 6.4. This table shows statistics of the accumulated cost along

the executed paths. Results indicate that the robot would, on average, plan wider

berths around rocks with uncertainty considered and execute safer paths in practice.

A point of interest is the number of collisions with a rock (considered in this test as

untraversable): 1 collision still occurred when using planning with uncertainty, against

2 collisions for the version without uncertainty, However, a subsequent probability

assessment of each trajectory (Eq. 6.2.2) showed that in this case, Mawson was quite

�unlucky� to collide with the rock as it had computed only a 16% chance of collision.

This assessment also revealed the rover was quite �lucky� it did not collide with

more than 2 rocks when uncertainty was not considered, with an average collision

probability of 38% per trajectory.

6.4 Experiments on Unstructured Terrain: Travers-

ing Rocks

We also conducted a series of experiments where the robot traverses rough terrain.

Trained GP models were used to predict control uncertainty as described in Sec. 6.1.

As in the training phase, the experiments were conducted in unstructured and rough

terrain because of the presence of rocks that the robot sometimes has to travel across,

but they were limited to areas with negligible terrain slopes.

6.4 Experiments on Unstructured Terrain: Traversing Rocks 61

The learned rough-terrain models were limited to traversal of one rock at a time, and

thus two rock �elds (Fig. 6.7) were set up accordingly (labelled `rock �eld A' and

`rock �eld B'). However, the layout of rocks was dense enough to cause the robot to

traverse multiple rocks while navigating to the goal region.

In addition to ∆syaw during rotation actions, two types of uncertainty were considered

(separately) with crab actions: ∆shead and ∆sdist. Fig. 6.8 and Fig. 6.9 show example

policies computed by our planning algorithm for each rock �eld.

Testing conducted on rock �eld B used an upgraded localisation system installed in

the Mars Yard. This was the InterSense IS-1200 inertial-optical tracking system [51].

This system uses a camera on the rover to compute rover position and orientation

with respect to �duciary markers placed in the Mars Yard. Accuracy of the sys-

tem was superior to the previous system mentioned Sec. 5.2.1, with the additional

bene�t that, as a global positioning system, error in localisation did not increase

with increased distance travelled by the rover. This new localisation system neces-

sitated rough terrain learning to be conducted again, as localisation inaccuracies are

indirectly captured in the learning data. We took this opportunity to additionally

increase torque applied to the rover's wheels for greater ability to climb larger rocks

in rock �eld B. Results of re-learning the control error in rough terrain are shown

in Table 6.5, marginalised by action. This learning was used for rock �eld B only.

This table additionally compares control error found during the learning phase with

those recorded during the planning/test phase 1 traversing rock �eld B. The observed

distributions reasonably match the predicted distributions.

Resultant trajectories in Fig. 6.10 show that whilst each planning method attempted

to navigate between rocks, the method of planning without uncertainty (red) would

tend to �zig zag� more severely in attempts to attain the least possible cost path, �nely

navigating every rock. Methods considering uncertainty (green, cyan), by contrast,

tended to �hold the course� more. This is because the �zig zag� action sequences can

actually result in more rock traversals in total, due to a greater distance travelled in

1Due to a bug in logging, values for two particular actions during planning were not recorded,
marked by a `n/a'.

62 Experimental Results

(a) Rock �eld A. The goal region to the right (out of the picture).

(b) Rock �eld B.

Figure 6.7 � Rock traversal experiment setup: Mawson is shown at its starting position.

It must traverse over a �rock �eld� to reach a goal region.

6.4 Experiments on Unstructured Terrain: Traversing Rocks 63

Figure 6.8 � Example policy obtained for rough terrain experiment with ∆shead con-

sidered, projected onto the x− y plane. The goal is the empty square in the upper

right corner of the �gure. Arrows indicate the preferred crab actions at each state.

Dots indicate rotations.

64 Experimental Results

(a) Policy without considering uncertainty.

(b) Policy considering distance uncertainty.

(c) Policy considering heading uncertainty.

Figure 6.9 � Motion policies over rough terrain (rock �eld B). Shown the for zero yaw

(rover facing positive x direction), down-sampled 16 fold. The goal is the orange

square in the bottom right corner.

6.4 Experiments on Unstructured Terrain: Traversing Rocks 65

(a) Rock �eld A.

(b) Rock �eld B.

Figure 6.10 � Examples of trajectories during the rock traversal experiments, compar-

ing planning when considering di�erent uncertainty sources. Shown are one or two

example trajectories from each of the following motion planning methods trialled:

Red: without uncertainty considered. Green: with uncertainty in heading. Cyan:

with uncertainty in distance. Cost map shown in grayscale, from dark to light as

cost increases. The starting position is indicated by the brown disk on the left and

the goal region is shown as the brown rectangle on the right. The planner generally

attempts to navigate between most of the rocks which are high cost.

66 Experimental Results

Table 6.5 � Second learning results for rough terrain traversal, used for rock �eld B.

This also compares control errors encountered during learning and testing.

Action: crab
0π

crab
±π/4

crab
±π/2

crab
±3π/4

crab π rotate
±π/4

Error: δshead δshead δshead δshead δshead δsyaw

Rough Terrain Learning - marginalised by Action
mean (rad) 0.030 -0.013 -0.021 -0.023 0.032 -0.151
std. (rad) 0.078 0.104 0.080 0.092 0.063 0.181
samples 21 47 42 34 17 32
Rough Terrain Planning - marginalised by Action
mean (rad) 0.017 0.009 0.009 n/a -0.011 -0.103
std. (rad) 0.139 0.129 0.101 n/a 0.061 0.27
samples 757 251 63 29 21 152

the rock �eld.

Results shown in Table 6.6 indicate the policies chosen by the planning with un-

certainty in this case were favourable, with less accumulated cost. In these tests,

considering heading uncertainty was most signi�cant to overall cost. This was fol-

lowed by considering distance uncertainty, and not considering uncertainty in control

performed the poorest. In this table, �stuck states� refers to situations where the rover

dug one of its wheels in next to a rock during the test and could not initially mount

the rock as the result. This occurred 20% - 30% of the time when no uncertainty

was considered. When considering uncertainty in distance travelled, stuck states still

occurred. However, planning with heading uncertainty again made more impact, with

the least amount of stuck states. During repeated motion planning trials on rock �eld

B, the accuracy of the elevation map computed deteriorated as the rover altered the

terrain slightly each time, including exact locations of each rock. This resulted in a

slight deterioration of each motion planning method. For fairness of comparison, the

motion planning method was changed every 5 trails.

This trend in the data supports the claim that our approach to consider the control

uncertainty can signi�cantly improve the safety of the platform at the execution of

planned trajectories.

6.4 Experiments on Unstructured Terrain: Traversing Rocks 67

Table 6.6 � Planning with traversal over rock �eld A and rock �eld B

Uncertainty
considered

#Trials #Stuck
States

Mean To-
tal Cost

Std. Total
Cost

Rock Field A
none 5 1 1.46 0.050
∆sdist,∆syaw 5 1 1.31 0.083
∆shead,∆syaw 5 0 1.19 0.061

Rock Field B, start position 1
none 10 3 1.99 0.526
∆sdist,∆syaw 10 1 1.80 0.673
∆shead,∆syaw 10 0 1.54 0.354

Rock Field B, start position 2
none 10 3 2.04 0.735
∆sdist,∆syaw 10 4 2.05 1.060
∆shead,∆syaw 10 3 1.96 0.743

Note that in these experiments we considered two sources of uncertainty indepen-

dently. Considering them in combination should then have an even stronger impact

on the platform safety. This will be left for future work.

68 Experimental Results

Chapter 7

Conclusion and Future Work

This chapter summarises conclusions of this thesis in Sec. 7.1. Future work is discussed

in Sec. 7.2.

7.1 Conclusions

Since the motion of any real mobile robot is stochastic to some degree, considering

control uncertainty at the planning stage enables us to signi�cantly enhance the safety

of the platform (e.g. mitigating chances of collisions) and lower the cost accumulated

on average during the execution of planned trajectories in real environments. These

claims were demonstrated in this thesis using a planetary rover.

A model of uncertainty was built using learned data and Gaussian processes to pre-

dict motions over �at and unstructured terrain in a Mars-analogue environment. The

trained model was then exploited to plan policies using dynamic programming, and to

execute paths following the planned policies. Experimental validation was achieved

both in simulation and in real experiments, in a variety of situations, taking into ac-

count uncertainties in heading and distance travelled. Our experiments compared the

executed trajectories generated by planning with uncertainty with those generated by

planning without considering uncertainty (deterministic control). These results show

the improvement in safety and accumulated cost when accounting for uncertainty.

70 Conclusion and Future Work

7.2 Future Work

Important areas of future work include the consideration of more complex terrain

with larger slopes and denser collections of small rocks. Rough terrain traversals in

this thesis were limited to traversing one rock at a time, however, complex terrain

can necessitate learning for multiple wheels traversing di�erent rocks simultaneously.

It is also important to study the ability of our approach to learn and predict the

deviations of control actions due to loose rocks that shift during traversal.

Online GP learning allows observations collected during navigation to be included in

the training data. Bene�ts include the ability of the rover to adapt to new types of

terrain as they are encountered. This is particularly relevant to planetary rovers, as

the exact robot-terrain interaction found in a Mars environment will not be known a

priori.

Real-time dynamic programming [6] is a further area of investigation, providing real-

time updates of DP transition functions as they are learned. This allows learning

computed online to update a motion policy in real-time, rather than taking e�ect on

subsequent motion policies when a new goal region is selected.

Bibliography

[1] H. Agarwal, J. E. Renaud, E. L. Preston, and D. Padmanabhan. Uncertainty
quanti�cation using evidence theory in multidisciplinary design optimization.
Reliability Engineering and System Safety, 85(1�3):281�294, 2004.

[2] R. Alterovitz, T. Simeon, and K. Goldberg. The stochastic motion roadmap: A
sampling framework for planning with Markov motion uncertainty. In Robotics:
Science and Systems, 2007.

[3] A. Angelova, L. Matthies, D. Helmick, and P. Perona. Learning and prediction
of slip from visual information. Journal of Field Robotics, 24:205�231, 2007.

[4] S. Balakirsky and A. Lacaze. World modeling and behavior generation for
autonomous ground vehicle. In IEEE International Conference on Robotics and
Automation, volume 2, pages 1201�1206, 2000.

[5] R. Balakrishna and A. Ghosal. Modeling of slip for wheeled mobile robots.
IEEE Transactions on Robotics and Automation, pages 126�132, feb 1995.

[6] A. G. Barto, S. J. Bradtke, and S. P. Singh. Learning to act using real-time
dynamic programming. 1993.

[7] J. Berb, P. Abbeel, and K. Goldberg. LQG-MP: Optimized path planning for
robots with motion uncertainty and imperfect state information. In Robotics:
Science and Systems, 2010.

[8] D. Bonnafous, S. Lacroix, and T. Simeon. Motion generation for a rover on
rough terrains. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2001.

[9] C. A. Brooks and K. Iagnemma. Self-supervised terrain classi�cation for
planetary surface exploration rovers. Journal of Field Robotics, Special Issue on
Space Robotics, Part I, 29(3):445�468, 2012.

[10] A. Bry and N. Roy. Rapidly-exploring random belief trees for motion planning
under uncertainty. In IEEE International Conference on Robotics and
Automation, 2011.

72 Bibliography

[11] B. Burns and O. Brock. Sampling-based motion planning with sensing
uncertainty. In IEEE International Conference on Robotics and Automation,
pages 3313�3318, april 2007.

[12] H. Durrant-Whyte and T. Bailey. Simultaneous localization and mapping: part
i. Robotics Automation Magazine, IEEE, 13(2):99�110, june 2006.

[13] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Burgard. An
evaluation of the rgb-d slam system. In IEEE International Conference on
Robotics and Automation, 2012.

[14] M. Quigley et al. Ros: an open-source robot operating system. In Open-Source
Software Workshop, IEEE International Conference on Robotics and
Automation, 2009.

[15] M. Greytak and F. Hover. Analytic error variance predictions for planar
vehicles. In IEEE International Conference on Robotics and Automation, pages
471�476, may 2009.

[16] L. J. Guibas, D. Hsu, H. Kurniawati, and E. Rehman. Bounded uncertainty
roadmaps for path planning. In Gregory Chirikjian, Howie Choset, Marco
Morales, and Todd Murphey, editors, Algorithmic Foundation of Robotics VIII,
volume 57 of Springer Tracts in Advanced Robotics, pages 199�215. Springer
Berlin / Heidelberg, 2009.

[17] D. Helmick, A. Angelova, and L. Matthies. Terrain Adaptive Navigation for
planetary rovers. Journal of Field Robotics, 26(4):391�410, 2009.

[18] K. Iagnemma, H. Shibly, A. Rzepniewski, and S. Dubowsky. Planning and
control algorithms for enhanced rough-terrain rover mobility. In International
Symposium on Arti�cial Intelligence, Robotics and Automation in Space, 2001.

[19] G. Ishigami, K. Nagatani, and K. Yoshida. Path planning for planetary
exploration rovers and its evaluation based on wheel slip dynamics. In IEEE
International Conference on Robotics and Automation, 2007.

[20] G. Ishigami, G. Kewlani, and K. Iagnemma. Statistical Mobility Prediction for
Planetary Surface Exploration Rovers in Uncertain Terrain. In IEEE
International Conference on Robotics and Automation, 2010.

[21] R. Platt Jr., R. Tedrake, L. Kaelbling, and T. Lozano-Perez. Belief space
planning assuming maximum likelihood observations. In Robotics: Science and
Systems, 2010.

[22] L. P. Kaelbling, M. L. Littman, and A. R. Cassandr. Planning and acting in
partially observable stochastic domains. Arti�cial Intelligence, 101(1�2):
99�134, 1998.

Bibliography 73

[23] H. J. Kappen. American Institute of Physics Conference Series (AIP),
Cooperative Behavior in Neural Systems, feb .

[24] S. Karaman and E. Frazzoli. Incremental sampling-based algorithms for
optimal motion planning. In Robotics: Science and Systems, 2010.

[25] S. Karumanchi, T. Allen, T. Bailey, and S. Scheding. Non-parametric learning
to aid path planning over slopes. In Robotics: Science and Systems, 2009.

[26] S. Karumanchi, T. Allen, T. Bailey, and S. Scheding. Non-parametric learning
to aid path planning over slopes. The International Journal of Robotics
Research, 29(8):997�1018, 2010.

[27] L. Kavraki and S. LaValle. Handbook of Robotics. Springer, 2008.

[28] L. E. Kavraki, P. �vestka, J.-C. Latombe, and M. H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional con�guration spaces. IEEE
Transactions on Robotics and Automation, 12(4):566�580, aug 1996.

[29] A. Krebs, C. Pradalier, and R. Siegwart. Adaptive rover behavior based on
online empirical evaluation: Rover-terrain interaction and near-to-far learning.
Journal of Field Robotics, 27(2):158�180, 2010.

[30] H. Kurniawati, T. Bandyopadhyay, and N. Patrikalakis. Global motion
planning under uncertain motion, sensing, and environment map. In Robotics:
Science and Systems, 2011.

[31] S. Lacroix, A. Mallet, D. Bonnafous, G. Bauzil, S. Fleury, M. Herrb, and
R. Chatila. Autonomous rover navigation on unknown terrains: Functions and
integration. The International Journal of Robotics Research, 21(10-11):917�942,
2002.

[32] T. Lang, C. Plagemann, and W. Burgard. Adaptive non-stationary kernel
regression for terrain modelling. In Robotics: Science and Systems, 2007.

[33] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Norwell,
MA, USA, 1991.

[34] S. M. LaValle. Rapidly-exploring random trees: A new tool for path planning.
In Technical Report, oct 1998.

[35] S. M. LaValle. Planning Algorithms. Cambridge Univ. Press, 2006.

[36] S. M. LaValle and S. A. Hutchinson. An objective-based framework for motion
planning under sensing and control uncertainties. The International Journal of
Robotics Research, 17(1):19�42, 1998.

74 Bibliography

[37] P.C. Leger, A. Trebi-Ollennu, J.R. Wright, S.A. Maxwell, R.G. Bonitz, J.J.
Biesiadecki, F.R. Hartman, B.K. Cooper, E.T. Baumgartner, and M.W.
Maimone. Mars exploration rover surface operations: driving spirit at gusev
crater. In IEEE International Conference on Systems, Man and Cybernetics,
volume 2, pages 1815�1822, Oct 2005.

[38] M. L. Littman, T. L. Dean, and L. P. Kaelbling. On the complexity of solving
markov decision problems. In Proceedings of the Eleventh conference on
Uncertainty in arti�cial intelligence, pages 394�402, 1995.

[39] R. McAllister, T. Peynot, R. Fitch, and S. Sukkarieh. Motion planning and
stochastic control with experimental validation on a planetary rover. In (to
appear in) IEEE/RSJ International Conference on Intelligent Robots and
Systems (accepted 2nd July 2012), 2012.

[40] P.E. Missiuro and N. Roy. Adapting probabilistic roadmaps to handle
uncertain maps. In IEEE International Conference on Robotics and
Automation, pages 1261�1267, may 2006.

[41] W. L. Oberkampf and J. C. Helton. Mathematical representation of
uncertainty. In American Institute of Aeronautics and Astronautics, 2001.

[42] S. Patil, J. Berg, and R. Alterovitz. Motion planning under uncertainty in
highly deformable environments. In Robotics: Science and Systems, 2011.

[43] C. Plagemann, S. Mischke, S. Prentice, K. Kersting, N. Roy, and W. Burgard.
Learning predictive terrain models for legged robot locomotion. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 3545�3552,
sept. 2008.

[44] S. Prentice and N. Roy. The belief roadmap: E�cient planning in belief space
by factoring the covariance. The International Journal of Robotics Research,
2009.

[45] C. E. Rasmusen and C. Williams. Gaussian Processes for Machine Learning.
MIT Press, 2006.

[46] P. S. Schenker, T. L. Huntsberger, P. Pirjanian, E. T. Baumgartner, and
E. Tunstel. Planetary rover developments supporting mars exploration, sample
return and future human-robotic colonization. Autonomous Robots, 14:103�126,
2003.

[47] R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press,
1998.

[48] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. Intelligent Robotics
and Autonomous Agents. MIT Press, 2005.

Bibliography 75

[49] J. P. Underwood, A. Hill, T. Peynot, and S. J. Scheding. Error modeling and
calibration of exteroceptive sensors for accurate mapping applications. Journal
of Field Robotics, 27:2�20, 2010.

[50] G. Varadhan and D. Manocha. Accurate minkowski sum approximation of
polyhedral models. Graphical Models, 68(4):343�355, 2006.

[51] D. Wormell, E. Foxlin, and P. Katzman. Advanced inertial-optical tracking
system for wide area mixed and augmented reality systems. In Proc. 10th
International Immersive Projection Technologies Workshop/13th Eurographics
Workshop on Virtual Environments, 2007.

76 Bibliography

Appendix A

A.1 Pseudocode for Motion Planning Algorithm

This section lists pseudocode for the motion planning algorithm implemented on the

test platform, to plan a motion policy over an elevation map to a goal region.

// De�nitions, Data Structures

GoalStates
.
= {∀ state ∈ States : GoalRegion.xMin ≤ state.x ≤ GoalRegion.xMax,

GoalRegion.yMin ≤ state.y ≤ GoalRegion.yMax} ∈ Staten

Transition
.
= {newState, probability, reward} ∈ {State,R,R}

Require: CostMap : State→ R

Require: ElevationMap : State→ R

Require: GoalRegion
.
= {xMin, xMax, yMin, yMax} ∈ R4

Require: KinematicModel : State, ElevationMap→ φ ∈ R, θ ∈ R

Require: P (relativeStateChange|roll, pitch, action) ∀ φ ∈ ΦdiscreteV alues,

θ ∈ ΘdiscreteV alues, action ∈ Actions

// 1. build states

buildWorld(costMap) // build a {x,y,yaw} matrix world of States

// 2. link states

78

startState =localise()

queue.push(startState)

while queue 6= ∅ do
state = queue.pop()

for ∀ action ∈ Actions do
st =stochasticTransition(state, action, elevationMap)

if st can go out of bounds then

continue // do not consider

end if

state.forwardTransitions.push(st) // parent records child

for ∀ child ∈ st.children do
child.backwardTransitions.push(st) // child records parent

queue.push()

end for

end for

end while

// 3. dp - build poilcy

queueDP.push(∀ state ∈ GoalStates)
while queueDP 6= ∅ do
state = queueDP.pop()

for ∀ st ∈ state.backwardTransitions do
valueOffer =bellmanValue(st.parentState, st.action)

if valueOffer > st.parentState.value then

st.parentState.value = valueOffer

queueDP.push(st.parentState)

end if

end for

end while

// 4. execute policy

A.1 Pseudocode for Motion Planning Algorithm 79

while currentState /∈ GoalStates do
for ∀ st ∈ currentState.forwardTransitions do
if possible that st can go of bounds then

continue // do not consider

end if

value =bellmanValue(currentState, st.action)

if value is highest seen so far for currentState then

optimalAction = st.action

end if

end for

controls.execute(optimalAction)

currentState =localise()

end while

// Function De�nitions

stochasticTransition(state, action, elevationMap):

φ = kinematicModel.estimatePhi(state, elevationMap)

θ = kinematicModel.estimateTheta(state, elevationMap)

P (newStates) = state+ P (relativeStateChange|φ, θ, action)

transitions = ∅
for ∀ newState ∈ P (newStates) do

reward = average cost of states in between state and newState

transitions.push({newState, P (newState), reward})
end for

return transitions

bellmanValue(state, action):

for ∀ t ∈ state.forwardTransitions[action.ID].transitions do

expectedReward+ = t.probability × (t.newState.value− t.reward)

80

end for

return expectedReward

A.2 Pseudocode for Kinematics Model Algorithm

This section lists pseudocode for the kinematics model algorithm used to model the

Rocker-bogie test platform on an elevation map. Some variable de�nitions are found

in Fig. 5.2.

Require: elevationMap : State→ R

Require: nodeArrangements (vector of all pin joint nodes (inc. wheel) locations to

robot's point position when on �at ground)

Require: States (input state to query the robot kinematics)

pose is a set of robot's position, orientation angles, chassis con�guration angles

[h1, h2, h3, h4, h5, h6] = getWheelElevations(wheelPositions, elevationMap)

while |max(elevationOfEachWheel)| > a small positive number do

// drop simulated robot

pose.height− = min(h1, h2, h3, h4, h5, h6)

reconfigureNodes(pose)

// correct the pitch

pose.pitch− = asin((avg(h1, h4)/avg(h3, h6))/robot.length)

reconfigureNodes(pose)

// correct the roll

pose.roll− = asin((avg(h1, h2, h3)/avg(h4, h5, h6))/robot.width)

reconfigureNodes(pose)

// correct the rocker-right pin-joint

pose.alpha1+ = asin((h1/avg(h2, h3))/L4)

// correct the rocker-left pin-joint

pose.alpha2+ = asin((h4/avg(h5, h6))/L4)

// correct the right-bogie pin-joint

pose.alpha3+ = asin((h2/h3)/L2)

A.2 Pseudocode for Kinematics Model Algorithm 81

// correct the left-bogie pin-joint

pose.alpha3+ = asin((h5/h6)/L2)

if Any value in pose is NaN then

mark state as obstacle

break

end if

end while

return pose

// Function De�nitions

reconfigureNodes(pose):

// Function which updates node positions based on robot pose

// rotation for vehicle orientation

rotationMatrix = getRotationMatrix(pose.orientationAngles)

for ∀ node ∈ nodes do
node = rotate(rotationMatrix, pose.position, pose.position+nodeArrangement(node))

end for

// rotation for joints in frame

// add root nodes that never change their position with repect to pose.position

queue.add(nodes.roots)

while queue 6= ∅ do
node = queue.pop()

if node.isWheel() then

continue

end if

// �nd location of child nodes

for ∀ childNode ∈ node.children do
childNode = rotate(node.pinJointAngle, node, node+(nodeArrangement(childNode)−
nodeArrangement(node)))

queue.add(childNode)

82

end for

end while

wheelElevations = getElevationOfEachWheel(nodes.wheelPositions, elevationMap)

return wheelElevations, nodes

	Declaration
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Objectives
	1.2 Motion Planning and Control Uncertainty
	1.3 Contributions
	1.4 Thesis Structure

	2 Related Work
	2.1 Motion Planning
	2.2 Uncertainty
	2.2.1 Localisation Uncertainty
	2.2.2 Environmental Mapping Uncertainty
	2.2.3 Control Uncertainty

	2.3 Incorporating Control Uncertainty in Motion Planning
	2.4 Conclusion

	3 Background
	3.1 Dynamic Programming
	3.1.1 Overview
	3.1.2 Value Iteration
	3.1.3 Sweeping

	3.2 Gaussian Processes
	3.2.1 Model
	3.2.2 Inference

	4 Motion Planning and Learned Control Uncertainty
	4.1 Control Uncertainty
	4.2 Learning-based Mobility Prediction
	4.3 Motion Planning
	4.4 System

	5 Implementation
	5.1 The Environment
	5.2 The Robot
	5.2.1 Localisation Accuracy

	5.3 Kinematics Model
	5.3.1 Predicting attitude angles and chassis configuration
	5.3.2 Feature Map
	5.3.3 Cost Map

	5.4 Planning
	5.4.1 State Space
	5.4.2 Action Set
	5.4.3 Reward Function

	5.5 Learning and GP
	5.5.1 Training
	5.5.2 Prediction
	5.5.3 Outputs

	5.6 Discussion

	6 Experimental Results
	6.1 Training on Flat and Rough Terrain
	6.1.1 Flat Terrain Training
	6.1.2 Rough Terrain Training

	6.2 Simulation of Flat Terrain Traversal
	6.3 Experiments of Flat Terrain Traversal
	6.4 Experiments on Unstructured Terrain: Traversing Rocks

	7 Conclusion and Future Work
	7.1 Conclusions
	7.2 Future Work

	Bibliography
	A
	A.1 Pseudocode for Motion Planning Algorithm
	A.2 Pseudocode for Kinematics Model Algorithm

