
Motion Planning and Stochastic Control with
Experimental Validation on a Planetary Rover

Rowan McAllister, Thierry Peynot, Robert Fitch and Salah Sukkarieh

Abstract— Motion planning for planetary rovers must con-
sider control uncertainty in order to maintain the safety of the
platform during navigation. Modelling such control uncertainty
is difficult due to the complex interaction between the platform
and its environment. In this paper, we propose a motion
planning approach whereby the outcome of control actions
is learned from experience and represented statistically using
a Gaussian process regression model. This model is used to
construct a control policy for navigation to a goal region in a ter-
rain map built using an on-board RGB-D camera. The terrain
includes flat ground, small rocks, and non-traversable rocks.
We report the results of 200 simulated and 35 experimental
trials that validate the approach and demonstrate the value of
considering control uncertainty in maintaining platform safety.

I. INTRODUCTION

Motion planning for mobile robots in unstructured envi-
ronments must consider various forms of uncertainty. One
significant source of uncertainty in outdoor terrain is control
uncertainty. Robots such as planetary rovers are designed
for mobility in challenging environments, but understanding
the associated control uncertainty for the purpose of motion
planning is difficult due to the complexity of this type of
environment. It is critical to consider control uncertainty in
motion planning, particularly in environments that expose
the robot to the risk of serious mechanical damage. We
are interested in this problem in the context of planetary
rovers [1]. Our goal is to navigate while maintaining the
safety of the platform in potentially dangerous terrain.

The goal of classical geometric motion planning is to
minimise time or distance while avoiding obstacles [2].
The conceptual distinction between free space and obstacles
for planetary rovers, however, is less clear. It is important
to avoid obstacles, but it is also desirable to avoid free
space where, due to control uncertainty, the robot has high
likelihood of encountering an obstacle during execution. This
situation cannot be modelled by simple distance thresholds
surrounding obstacles because risk varies across free space,
and is probabilistic.

Accurately predicting executed behaviour in response to
a given control input is difficult for planetary rovers due
to complex terramechanics [3]. For previously unobserved
terrain, prior models of terrain properties may not be avail-
able. It is thus important to model control uncertainty with a

The work was supported by the Australian Research Council, the
Australian Space Research Program Pathways to Space: Empowering the
Internet Generation, the Australian Centre for Field Robotics, and the Air
Force Research Laboratory under agreement FA2386-10-1-4153.

R. McAllister, T. Peynot, R. Fitch and S. Sukkarieh are with the
Australian Centre for Field Robotics, The University of Sydney, Australia
{r.mcallister,tpeynot,rfitch}@acfr.usyd.edu.au

Fig. 1. Planetary rover “Mawson” used for experimental validation, shown
in the Mars yard at the Powerhouse Museum in Sydney, Australia.

method that can be feasibly executed online during operation
of the robot, and to validate such a model experimentally.

Our approach is to build a statistical model directly from
observed behaviour, represented as a Gaussian process (GP).
We consider uncertainty in the heading of the platform and
in distance travelled. We use this GP model to build a
stochastic transition function for use in motion planning. The
planning goal is to compute a policy that allows the robot
to reach a given goal location while maintaining the safety
of the platform. We assume that a map of the environment
is available, represented as a digital elevation map. Platform
safety is represented by a cost function over this terrain map,
which is constructed a priori using on-board sensors. We
compute the policy using dynamic programming (DP), where
the resolution of discretised geometric states is equal to that
provided in the elevation map.

In this paper, we present the details of our approach and its
implementation for the planetary rover shown in Fig. 1. The
environment consists of flat terrain, traversable rocks, and
non-traversable rocks. We learn GP models for rock traversal
that map environment features to a distribution of resulting
rover configurations (in state space) for two types of control
actions. The cost map is constructed from data collected by
an on-board RGB-D camera. We report results from 200
simulated and 35 experimental trials that evaluate the rover’s
ability to traverse flat terrain and small rocks while avoid-
ing non-traversable rocks. We compare rover performance
in executing policies constructed with and without control
uncertainty. Our results show empirically that planning with
control uncertainty improves the rover’s ability to navigate
while avoiding non-traversable areas, and demonstrate the
value of planning under uncertainty for planetary rovers
using a real platform in a realistic environment.

II. RELATED WORK
A common approach for considering control uncertainty

in motion planning is to express the uncertainty as a cost
and then to plan a path that minimises this cost assuming
deterministic control [4], [5]. Another family of approaches
plans a path using a sampling-based algorithm, and then
evaluates the control uncertainty along the path selected [6],
[7]. In classical motion planning, the desired path is provided
to a feedback controller for execution. Various forms of
control strategies (such as LQG) can be used to model
potential deviations from the path and hence to select a path
with least risk in terms of platform safety [8], [9].

For non-determinisitic systems Markov decision pro-
cesses (MDPs) are commonly used to formulate problems in
motion planning with uncertainty [2], [10]. Control uncer-
tainty is represented as a stochastic transition function, and
a policy can be computed using dynamic programming [11].
The partially-observable Markov decision process (POMDP)
is another common formulation [11]. However, these tech-
niques are most often evaluated in simulation only and there
is a critical need for further validation using real robots.

Recent work by Brooks and Iagnemma [12] models con-
trol uncertainty as a function of terrain in a self-supervised
learning framework. This approach uses visual features to
classify terrain types and learn associated proprioceptive
mechanical properties.

Finally, physics-based approaches that study terramechan-
ics provide detailed mobility models by considering fea-
tures such as soil cohesion and density [13]. Statistical
mobility prediction using terramechanics has been proposed
that generates a Gaussian distribution over predicted future
states on homogeneous terrain [3]. However, it is difficult to
precisely model non-homogeneous terrain that includes rocks
of different sizes and shapes that may move in reaction to
the force exerted by a rover wheel.

In our work we directly search for a path with low
risk of entering a non-traversable area, but our model of
stochastic actions is tied to observed environmental features
that vary across the terrain and learned through experience.
We furthermore consider risk at the level of primitive actions
and construct a policy that is executed directly. Our approach
uses statistical regression techniques in performing the in-
ference and direct learning is applied showing meaningful
improvements to motion planning are possible without a
complex terramechanics model.

III. MOTION PLANNING AND LEARNED
CONTROL UNCERTAINTY

With the aim of reaching a given goal region safely
while optimising the total cost of traversal over the exe-
cuted trajectory, our approach is to take into account the
stochasticity of the control of the robot at the planning stage.
This requires modelling the control uncertainty, which we
achieve by experience, using machine learning. This section
first describes the planning algorithm used in our approach
(Sec. III-A), followed by the presentation of the learning
technique used to model the control uncertainty (Sec. III-B).

A. Planning Algorithm

We compute a control policy for the robot using dynamic
programming (DP). DP computes an optimal policy with
respect to a discrete set of (stochastic) primitive motions
and given resolution of the state space [2]. DP is a feasible
method in low dimensional state spaces; in our problem the
state s can be defined using two lateral dimensions x and y
and one dimension for orientation ψ, i.e., s = {x, y, ψ}.

This formulation treats the motion planning problem as a
Markov Decision Process, assuming accurate localisation and
stochastic control. The optimal motion policy is computed
using the Bellman optimality equation iteratively:

V ∗(s) = max
a

{∑
s′

P (s′|s, a)(R(s′|s, a) + γV (s′))
}
, (1)

where s is the robot state (discretised into uniform cells),
a is an action (or motion primitive) from the action set A,
and γ = 1 is the discount factor. The transition function
P (s′|s, a) describes the probability that a state-action pair
(s, a) transitions to state s′. The optimal policy is given by:

π∗(s) = argmax
a

{∑
s′

P (s′|s, a)(R(s′|s, a) + γV (s′))
}
,

(2)
where the reward R(s′|s, a) is computed from a cost map
that represents the difficulty of the terrain. P (s′|s, a) is not
known a priori. Therefore, these state transitions are learned
from experience, as described below.

B. Learning-based Mobility Prediction

P (s′|s, a) can be expressed using a PDF of the relative
transition between states, p(∆s|s, a), where ∆s ≡ s′ − s:

P (s′|s, a) =

∫
p(∆s|s, a)f(s+ ∆s, s′) d∆s, (3)

where f(s1, s2) = 1 if the discretisation of s1 corresponds
to s2 and f(s1, s2) = 0 otherwise. In unstructured terrains,
∆s may strongly depend on factors such as the terrain
profile along the executed path and also the action executed.
Terrain profiles are represented by a vector of features (or
characteristics): λ(s, a). Therefore, p(∆s|s, a) is learned as
a function of λ(s, a) and a:

p(∆s|s, a) = p(∆s|λ(s, a), a). (4)

The estimation of relative change in state is achieved
using Gaussian Process (GP) regression. GP is a standard
framework to learn a model of spatially correlated data and
provides estimations with uncertainty. The GP framework is
especially effective in cases where the input data are sparsely
populated.

We use the GP formulation from [14]. The input vector x
is a function of the terrain features, shifted such that the
input has zero mean, i.e., x = λ− λ̄train, where λ̄train
is the mean of each terrain feature in the training data.
We define ∆si,a as the ith single-valued component of the
change of state ∆s resulting from executing action a. We
define a GP for each ∆si,a, i ∈ [[1, N]], a ∈ A, where
N = Dim(s). The output value yi,a of one of these

GPs is defined as yi,a = ∆si,a − ¯∆si,a, where ¯∆si,a is the
mean value of ∆si across all executions of action a in
the training data. yi,a = fi,a + wi,a has a zero mean and
variance σ2

n equal to the variance of the additive noise wi,a,
i.e., p(yi,a|fi,a) = N (0, σ2

n).
The covariance function used to describe the spatial corre-

lation between two input vectors is the squared exponential:

k(x,x′) = σ2
f exp

(
− 1

2
(x−x′)>Λ−2(x−x′)

)
+σ2

nI, (5)

where σ2
f is the input variance and Λ is a length scale matrix

of diagonal elements that describes the smoothness of the
input data. The predictive distribution is given by a Gaussian,

p(∆si,a|λ(s, a))− ¯∆si,a = p(f∗|X,Y,x∗) ∼ N (µ∗,Σ∗),
(6)

with predictive mean

µ∗ = K(x∗, X)[K(X,X) + σ2
nI]−1Y,

and variance

Σ∗ = K(x∗,x∗)

−K(x∗, X)[K(X,X) + σ2
nI]−1K(X,x∗),

where X is the n×m matrix of all n training input vectors,
Y is the n×1 vector of all training output values, and x∗ is
the test input vector. K(X,x∗) is a covariance matrix which
stores the covariance of each training input value against the
test input values.

Thus, p(∆si,a) can be computed for untraversed terrain
profiles using Eq. (6), where the test input vector x∗ has not
been observed directly but rather estimated by employing a
kinematics model of the robot over the series of states that
would be traversed by executing action a from state s.

Finally, our planner considers the uncertainty in each
component ∆si separately by using the full distribution
learnt from ∆si and the expectation of the other components.
Representing λ(s, a) as λ, Eq. (4) is calculated as:

p(∆s|λ, a) = p({∆s1, ...,∆si, ...,∆sN}|λ, a) ≈
{E(∆s1|λ, a), ..., p(∆si|λ, a), ...,E(∆sN |λ, a)}. (7)

C. System Outline
Fig. 2 shows an outline of the system. Once an elevation

map of the robot’s local environment has been computed, a
kinematics model is used to estimate both the terrain profile
characteristics and cost of traversal (R(s′|s, a)) at each state-
action pair. Characteristics of the terrain profile, as observed
by the Inertial Measurement Unit (IMU) and the localisation
system, are used as input data to train the GP offline. The
GP can then be used to estimate the stochastic transition
function P (s′|s, a) on terrain similar to that encountered
during training. Using both P (s′|s, a) and R(s′|s, a), the
motion planner computes the value function (Eq. (1)) over
the observed state space to follow greedily as per the policy
given in Eq. (2).

IV. IMPLEMENTATION
This section describes the implementation of the proposed

approach on our experimental Mars rover shown in Fig. 3(a).

Fig. 2. System Outline. Colours indicate perception (red), offline learning
(yellow), estimation (blue) and planning (green).

(a) Mawson (b) Orientation and Internal angles

Fig. 3. The Mawson Rover (a) and its chassis configuration (b).

A. The Robot

Mawson is a six-wheeled rover with individual steering
servo motors on each wheel and a Rocker-bogie chassis. The
platform is equipped with:

• an RGB-D camera (Microsoft Kinect) mounted on a
mast, tilted down 14◦, used for terrain modelling and
localisation,

• a 6-DOF IMU used to measure the roll (φ) and pitch
(θ) of the robot,

• three potentiometers to observe the configuration of the
chassis by measuring both bogie angles and the rocker
differential (αi in Fig. 3(b)).

For localisation and terrain modelling we use the
RGB-D SLAM algorithm [15], implemented in the Robot
Operating System (ROS) [16], which uses data from the
RGB-D camera to perform simultaneous localisation and
mapping (SLAM) online. An elevation map is generated
from the point clouds supplied by the RGB-D camera by
distributing elevation points in a regular Cartesian grid. The
grid resolution is 0.025m× 0.025m.

B. Kinematics Model

To predict the attitude angles {φ, θ} and chassis configura-
tion {α2−α1, α3, α4} of the rover at given positions on the
elevation map, we use a method similar to [17]. Although it
does not take into account the dynamics of the platform, this
simplified model is a sufficient approximation since the rover
operates at low speeds. This kinematics model is used to:
1) estimate terrain profile characteristics for (s, a) pairs the
planner queries, and 2) compute a cost map of the observed
terrain (see Fig. 2).

1) Feature Map: From the estimates of the configurations
of the rover on the map, a feature map is built for each (s, a)
pair using the GP model to predict P (∆s) for each (s, a)
pair the planner considers.

2) Cost Map: The cost function chosen to generate the
cost map from the elevation map penalises large absolute
values of roll, pitch, and configuration angles of the chassis
at a given position s = {x, y, ψ}:

costterrain(s) = (costφθ(s) + costα(s))2, (8)

where

costφθ(s) = (φ2 + θ2), (9)
costα(s) = (α2 − α1)2 + α2

3 + α2
4. (10)

Since the configuration of the robot at a given position on
the elevation map depends on its orientation, a 2D (x, y) cost
map needs to be generated for each discretised orientation.
The result is a 3-dimensional (x, y, ψ) cost map.

C. Planning

1) State Space: As mentioned in Sec. III-A, the rover’s
state s is defined as its position and orientation:

s , {x, y, ψ} ∈ R3. (11)

This definition specifies all other orientations and internal
angles (φ, θ, αi) at each state using the kinematics model.
State resolution was required to be smaller than the uncer-
tainty bounds of resultant positions of actions in order for
uncertainty to be considered by the DP. A discretisation of
0.025m× 0.025m× π

32rad is sufficient.
2) Action Set: We define two action types for the rover:

crabbing and rotation. Crabbing corresponds to executing a
straight line translation in the xy-plane by a given distance
and heading, with no change in ψ, and constant linear
velocity (0.11m/s). The rover is able to crab in any direction.
Rotation is a spin-on-the-spot motion primitive at constant
angular velocity (0.24rad/s). It changes ψ by a given
magnitude. In total, the action set A is composed of 2 rotation
and 8 crabbing motion primitives:

A ,
{

rotate (π/4) , rotate (−π/4) ,

crab (0.3m,nπ/4) ∀n ∈ [[−3, 4]]
}
. (12)

Restricting the actions to this set was the result of a trade-off
between rover dexterity and algorithm complexity.

3) Reward Function: The reward R(s′|s, a) of an action
is defined as the negative of the average cost of states that
lie on a linear interpolation between a start state s and a
resultant state s′:

R(s′|s, a) = −ξ − 1

K

K∑
i=0

Cost
(
sx +

i

K
(s′x − sx),

sy +
i

K
(s′y − sy), sψ +

i

K
(s′ψ − sψ)

)
,

(13)

where ξ = 0.003 is a small penalty used to deter excessive
motions on flat terrain and K is the sampling resolution.

D. Learning and GP

To achieve mobility prediction from training data, we used
the GP implementation from [14]. These training data were
obtained through experimental runs of the rover executing
each action a from A multiple times, while logging dis-
cretised sets of {φ, θ, time, s, a} continuously. The training
data collected comprise the rover’s attitude angles, provided
by the on-board IMU, and the deviation from the expected
motion when executing a given action, measured using the
localisation system. Due to the left-right symmetry of the
platform, training was only required on 6 of the 10 actions
from A (Fig. 4 shows which set of training data can be
combined between symmetric actions).

Due to slow localisation updates, ∆s could only be mea-
sured at the end of each action primitive. However, multiple
values of {φ, θ} were recorded during the execution of an
action primitive, resulting in a vector of these values {φ,θ},
representing the terrain profile. Terrain profiles were encoded
more compactly by extracting features of the evolution of
{φ,θ} to avoid overfitting. A combination of terrain profile
features were tested with GP regression using cross valida-
tion. The features (vector of functions λ) which produced
the lowest Root Mean Square error between the GP mean
estimations and test datum output were chosen:

λ , {λ1, λ2, λ3, λ4}, (14)

where

λ1(φ,θ) = max(φj − φi), ∀i, j : i < j (15)
λ2(φ,θ) = min(φj − φi), ∀i, j : i < j (16)
λ3(φ,θ) = max(θj − θi), ∀i, j : i < j (17)
λ4(φ,θ) = min(θj − θi), ∀i, j : i < j, (18)

i.e., largest increase of φ, largest decrease of φ, largest
increase of θ and largest decrease of θ during an action
primitive.

When planning over previously untraversed states, φ and
θ are estimated using the kinematics model from a state-
action pair: φ̂(s, a) and θ̂(s, a). The λ functions are then
applied to these estimates, which are input to the GP. Thus,
the expression

p(∆si|λ(s, a), a) = p(∆si|λ(φ̂(s, a), θ̂(s, a), a))

is substituted in Eq. (7).

The components ∆si of ∆s (see Sec. III-B) were defined
according to radial coordinates, as per the control space of
crabbing and rotations, opposed to the Cartesian representa-
tion of the state space {x, y, φ} itself. The ∆si components
we consider are heading and distance travelled for crabbing
actions

∆s1 = ∆shead = atan2(∆y,∆x) (19)

∆s2 = ∆sdist =
√

(∆x)2 + (∆y)2, (20)

and yaw for rotation actions

∆s3 = ∆syaw = ∆ψ. (21)

Therefore, ∆s is represented by the tuple

∆s , {∆shead,∆sdist,∆syaw}. (22)

In the rest of the paper, we define control errors (δs) as
the difference between observed change in state (∆s) and
“ideal” change in state (∆̃s) (i.e., if the controller followed
the action-command perfectly); i.e., δs = ∆s− ∆̃s, a tuple
analagous to Eq. (22).

V. EXPERIMENTAL RESULTS

We evaluated our approach both in simulation and through
experiments with a planetary rover robot. Our experimental
methodology consisted of two phases. First, we learned
statistics of control error through empirical trials, described
in Sec. V-A. Then, we performed navigation experiments us-
ing these learned data to build the motion planner’s stochastic
transition function. Sec. V-B describes experiments in sim-
ulation, and Secs. V-C and V-D describe experiments using
the robot.

Experiments were conducted in the Mars Yard environ-
ment shown earlier in Fig. 1. This environment is 117m2 in
area and was designed to reproduce typical Martian terrain.
It contains rocks of various sizes, small craters, and various
grades of sand, dirt and gravel.

A. Training on Flat and Rough Terrain

Training was conducted for two cases: flat-terrain traversal
and rough-terrain traversal. For the flat terrain case, control
errors were learned by executing multiple runs for each
action. Rough-terrain training additionally involved traversal
of various rocks (one at a time).

In flat-terrain traversal, variations of values of {φ, θ}
were negligible, therefore, motion errors were learnt with
respect to action only. Fig. 4 shows example heading errors
for each action, and Table I lists learned statistical values.
Although the terrain was mostly flat, the variance in motion
primitive error is significant, which validates the need to
take uncertainty into account in the planning. We found
that the distributions could reasonably be approximated by a
Gaussian.

During rough-terrain traversal, various rocks were tra-
versed. Note that in some cases some rocks shifted under
the weight of the rover, slightly sinking into the sand or
rolling over. These types of situations, which are extremely

(a) Crab(0.3m, 0π) (b) Crab(0.3m, ±π
4

) (c) Crab(0.3m, ±π
2

)

(d) Crab(0.3m, ± 3π
4

) (e) Crab(0.3m, π) (f) Rotate(±π
4

)

Fig. 4. Mobility prediction by action on flat terrain.

TABLE I
MOBILITY PREDICTION BY ACTION, GP FEATURES NOT INCLUDED

Action: crab
0π

crab
±π/4

crab
±π/2

crab
±3π/4

crab π rotate
±π/4

Error: δshead δshead δshead δshead δshead δsyaw

Flat Terrain
mean (rad) 0.043 0.028 0.004 0.006 0.058 -0.117
std. (rad) 0.074 0.103 0.127 0.091 0.088 0.140
samples 15 34 39 34 12 32
Rough Terrain - marginalised by Action
mean (rad) 0.044 0.010 0.060 0.037 0.037 -0.063
std. (rad) 0.081 0.115 0.158 0.117 0.089 0.119
samples 43 58 58 48 35 54

difficult to predict by modelling, were therefore captured
in our learning data. As expected, the control errors were
more significant in rough terrain data. Table II shows the
GP hyperparameters obtained.

B. Simulation of Flat Terrain Traversal

We simulated the robot traversing flat terrain. Control
uncertainty was simulated using the learned data described
in Sec. V-A. The robot’s environment was simulated using
a point cloud acquired by the robot’s RGB-D camera. This
environment is a roughly flat area with a cluster of rocks,
shown in Fig. 5(b). Trials consisted of placing the robot
randomly around the cluster of rocks and directed to a unique
goal region opposite the rock cluster. We used a cost function
where any rock on the terrain appears as an obstacle.

TABLE II
GP HYPERPARAMETERS TRAINED FROM TRAVERSALS IN ROUGH

TERRAIN

Action Error Λ−2
11 Λ−2

22 Λ−2
33 Λ−2

44 σf σn
crab 0π δshead 0.056 0.052 10.59 10.56 0.251 0.029
crab ±π

4
δshead 0.068 0.010 0.063 0.087 0.183 0.032

crab ±π
2

δshead 0.644 0.448 0.015 0.024 0.000 0.111
crab ± 3π

4
δshead 1.89 0.058 0.068 1.78 0.284 0.040

crab π δshead 0.055 0.042 0.151 2.47 0.163 0.032
rotate ±π

4
δsyaw 0.007 0.246 0.036 0.014 0.135 0.042

(a) Simulated trajectories

(b) The real terrain

Fig. 5. (a) shows a few samples of simulated trajectories to navigate
around a cluster of rocks (shown in (b)). The cost on the map is shown as
levels of grey, with white indicating the highest cost, for a single orientation
value: the rover facing left. The brown rectangle on the left indicates the
common goal region. Red trajectories were computed without considering
uncertainty, while green trajectories considered uncertainty.

Planning without uncertainty (whereby the expectation of
the transition function E(P (∆s|λ(s, a), a)) learned is used
instead of the full distribution) and planning considering
uncertainty were each tested 100 times. When planning
considering uncertainty, the flat-terrain learning data were
used, whereby ∆shead was considered during crab actions,
and ∆syaw was considered during rotate actions. Resultant
trajectories were assessed in light of the known ∆shead and
∆syaw distributions to determine the probability of colliding
with a rock as well as the expectation of accumulated cost
for each trajectory. Results obtained for both methods can be
compared using the statistics on all executed trajectories in
Table III. These statistics represent: the averages of total cost
accumulated form start position to goal, the probability of
hitting an obstacle summed over the entire trajectory and the
minimum distance to an obstacle over the trajectory. Fig. 5(a)
shows a few examples of trajectories executed.

Results in Table III highlight two of the major conse-
quences of planning without uncertainty: a platform will be
more likely to collide with an obstacle and will, on average,
accumulate more cost in traversing to the goal region. In
fact, when planning without uncertainty, the projected accu-
mulated cost will always be underestimated when the robot
deviates at least once from the lowest cost path it computes,

TABLE III
SIMULATED PLANNING AROUND A CLUSTER OF ROCKS

No Uncertainty Cost Prob. Min. Dist. (m)
mean 1.132 0.028 0.154
std. 0.605 0.101 0.131
max. 6.879 0.68 0.530
min. 0.727 0 0.015
Head. Uncertainty Cost Prob. Min. Dist. (m)
mean 1.080 0.005 0.161
std. 0.138 0.035 0.113
max. 1.449 0.34 0.505
min. 0.733 0.0 0.025

which is frequently the case with imperfect control. Thus
planning without uncertainty cannot provide any guarantee
of total cost accumulated to reach a goal region, which
is important when a decision needs to be made regarding
if a goal region is worth visiting up to a certain cost of
traversing there. The safety issue of rock collisions occurs
when the planner follows paths very close to an obstacle
without considering consequences of slight deviations from
its path.

C. Experiments of Flat Terrain Traversal

We conducted a series of experiments using the physical
robot traversing flat terrain. The robot navigated from a
starting position to a goal region whilst avoiding large
rocks. The terrain was flat sand and gravel, however due
to the imperfect control on the loose terrain, the control
uncertainties were significant, as shown earlier in the training
data in Sec. V-A.

Trajectories were planned and executed on the robot
10 times for planning with uncertainty (in heading during
crabbing actions and yaw during rotation actions). For com-
parison, 10 trajectories were also planned and executed with-
out accounting for uncertainty. In both cases, two different
starting points were used, while the goal region was the same.

Fig. 6 shows a few examples of the actual trajectories
executed by the rover. Occlusions shown in the cost map are
due to “shadows” of rocks when they were observed by the
robot.

The results of planning with uncertainty of heading dur-
ing crabbing actions and yaw during rotation actions are
compared statistically against results of planning without
uncertainty in Table IV. Results indicate that the robot would,
on average, plan wider berths around rocks with uncertainty
considered and execute safer paths in practice.

D. Experiments on Unstructured Terrain: Traversing Rocks

We also conducted a series of experiments where the robot
traverses rough terrain. Trained GP models were used to
predict control uncertainty as described in Sec. V-A. As
in the training phase, the experiments were conducted in
unstructured and rough terrain because of the presence of
rocks that the robot sometimes has to travel across, but they
were limited to areas with negligible terrain slopes.

Fig. 6. Example of trajectories taken to avoid several rocks on otherwise
flat terrain. Red: without uncertainty considered. Green: with uncertainty in
heading. The starting position is indicated by the brown circle on the left
and the goal region is shown as the brown rectangle at the bottom right.
Planning with uncertainty generates paths that are less sensitive to control
error.

The learned rough-terrain models were limited to traversal
of one rock at a time, and so a rock field (Fig. 7) was set up
accordingly. However, the layout of rocks was dense enough
to cause the robot to traverse multiple rocks while navigating
to the goal region.

In addition to ∆syaw during rotation actions, two types of
uncertainty were considered (separately) with crab actions:
∆shead and ∆sdist. Fig. 8 shows an example policy com-
puted by our planning algorithm.

Resultant trajectories in Fig. 9 show that whilst each
planning method attempted to navigate between rocks, the
method of planning without uncertainty (red) would tend
to “zig zag” more severely in attempts to attain the least
possible cost path, finely navigating every rock. Methods
considering uncertainty (green, cyan), by contrast, appear
smoother. The “zig zag” action sequences can actually result
in more rock traversals in total, due to a greater distance
travelled in the rock field.

Results shown in Table V indicate that policies chosen
by the planning with uncertainty case were favourable, with
less accumulated cost. In these tests, considering heading
uncertainty was most significant to overall cost. In this table,
“stuck states” refers to situations where the rover dug one
of its wheels in next to a rock during the test and could not
initially mount the rock as the result. This occurred 20% of

TABLE IV
FLAT TRAVERSAL: PROBABILITY ASSESSMENT

No Uncertainty Cost Prob. Hit Min. Dist. (m)
trials: 10 Mean: 1.295 0.380 0.095
collisions: 1 Std.: 0.385 0.492 0.084
Uncertainty Cost Prob. Hit Min. Dist. (m)
Trials: 10 Mean: 1.177 0.016 0.165
Collisions: 2 Std.: 0.262 0.005 0.088

TABLE V
PLANNING WITH TRAVERSAL OVER ROCKS

Uncertainty
considered

Trials # Stuck
States

Mean
Cost

Std.
Cost

none 5 1 1.46 0.050
∆sdist,∆syaw 5 1 1.31 0.083
∆shead,∆syaw 5 0 1.19 0.061

the time when no uncertainty was considered. When con-
sidering uncertainty in distance travelled, a stuck state still
occured. However, planning with heading uncertainty again
made more impact, with all stuck states avoided. Although
the sample size is limited, this trend in the data supports the
claim that our approach to consider the control uncertainty
can significantly improve the safety of the platform at the
execution of planned trajectories.

Note that in these experiments we considered two sources
of uncertainty independently. Considering them in combina-
tion should then have an even stronger impact on the platform
safety. This will be tackled in future work.

VI. CONCLUSION

Since the motion of any real mobile robot is stochastic to
some degree, considering control uncertainty at the planning
stage enables us to significantly enhance the safety of the
platform (e.g. mitigating chances of collisions) and lower
the cost accumulated on average during the execution of
planned trajectories in real environments. These claims were
demonstrated in this paper using a holonomic planetary
rover. A model of uncertainty was built using learning data
and Gaussian processes to predict motions over flat and
unstructured terrain in a Mars yard setup. The trained model
was then exploited to plan policies using dynamic program-
ming, and to execute paths following the planned policies.
Experimental validation was achieved both in simulation and
in real experiments, in a variety of situations, taking into
account uncertainties in heading and distance travelled. The
experimental validation demonstrates the results obtained
on the actual executed trajectories compared to trajectories
executed when planning without considering uncertainty (de-

Fig. 7. Rock traversal experiment setup: rover is shown at its starting
position. It must traverse over a “rock field” to reach a goal region to the
right (out of the picture).

Fig. 8. Example policy obtained for rough terrain experiment with ∆shead
considered, projected onto the x − y plane. The goal is the empty square
in the upper right corner of the figure. Arrows indicate the preferred crab
actions at each state. Dots indicate rotations.

Fig. 9. Examples of trajectories during the rock traversal experiments,
comparing planning when considering different uncertainty sources. Red:
without uncertainty considered. Green: with uncertainty in heading. Cyan:
with uncertainty in distance. Cost map shown in grayscale, from dark to
light as cost increases. The starting position is indicated by the brown disk
on the left and the goal region is shown as the brown rectangle at the top
right corner. The planner generally attempts to navigate between most of
the rocks which are high cost.

terministic control). These results show the improvement in
safety and accumulated cost when accounting for uncertainty.

In future work, we will consider more complex terrain
with larger slopes, denser collections of small rocks. We
are particularly interested in studying the ability of our
approach to learn and predict the deviations of control

actions due to loose rocks that shift during traversal. We will
also investigate an extension of the GP learning to include
observations collected during navigation.

REFERENCES

[1] P. S. Schenker, T. L. Huntsberger, P. Pirjanian, E. T. Baumgart-
ner, and E. Tunstel, “Planetary rover developments supporting mars
exploration, sample return and future human-robotic colonization,”
Autonomous Robots, vol. 14, pp. 103–126, 2003.

[2] S. LaValle, Planning Algorithms. Cambridge Univ. Press, 2006.
[3] G. Ishigami, G. Kewlani, and K. Iagnemma, “Statistical Mobility Pre-

diction for Planetary Surface Exploration Rovers in Uncertain Terrain,”
in IEEE International Conference on Robotics and Automation, 2010.

[4] S. Lacroix, A. Mallet, D. Bonnafous, G. Bauzil, S. Fleury, M. Herrb,
and R. Chatila, “Autonomous Rover Navigation on Unknown Terrains:
Functions and Integration,” The International Journal of Robotics
Research, vol. 21, no. 10-11, pp. 917–942, 2002.

[5] D. Helmick, A. Angelova, and L. Matthies, “Terrain Adaptive Navi-
gation for planetary rovers,” Journal of Field Robotics, vol. 26, no. 4,
pp. 391–410, 2009.

[6] A. Bry and N. Roy, “Rapidly-exploring random belief trees for motion
planning under uncertainty,” in IEEE International Conference on
Robotics and Automation, 2011.

[7] G. Ishigami, K. Nagatani, and K. Yoshida, “Path planning for planetary
exploration rovers and its evaluation based on wheel slip dynamics,”
in IEEE International Conference on Robotics and Automation, 2007.

[8] S. Patil, J. Berg, and R. Alterovitz, “Motion planning under uncertainty
in highly deformable environments,” in Robotics: Science and Systems
VII, 2011.

[9] J. Berb, P. Abbeel, and K. Goldberg, “LQG-MP: Optimized path
planning for robots with motion uncertainty and imperfect state
information,” in Robotics: Science and Systems VI, 2010.

[10] S. M. LaValle and S. A. Hutchinson, “An Objective-Based Framework
for Motion Planning under Sensing and Control Uncertainties,” The
International Journal of Robotics Research, vol. 17, no. 1, pp. 19–42,
1998.

[11] H. Kurniawati, T. Bandyopadhyay, and N. Patrikalakis, “Global motion
planning under uncertain motion, sensing, and environment map,” in
Robotics: Science and Systems VII, 2011.

[12] C. A. Brooks and K. Iagnemma, “Self-Supervised Terrain Classifi-
cation for Planetary Surface Exploration Rovers,” Journal of Field
Robotics, Special Issue on Space Robotics, Part I, vol. 29, no. 3, pp.
445–468, 2012.

[13] K. Iagnemma, H. Shibly, A. Rzepniewski, and S. Dubowsky, “Planning
and control algorithms for enhanced rough-terrain rover mobility,”
in International Symposium on Artificial Intelligence, Robotics and
Automation in Space (i-SAIRAS), 2001.

[14] C. E. Rasmusen and C. Williams, Gaussian Processes for Machine
Learning. MIT Press, 2006.

[15] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Bur-
gard, “An evaluation of the rgb-d slam system,” in IEEE International
Conference on Robotics and Automation, 2012.

[16] M. Quigley et al., “Ros: an open-source robot operating system,” in
Open-Source Software Workshop, IEEE International Conference on
Robotics and Automation, 2009.

[17] D. Bonnafous, S. Lacroix, and T. Simeon, “Motion generation for a
rover on rough terrains,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2001.

