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Abstract— Autonomous vehicle software is typically struc-
tured as a modular pipeline of individual components (e.g.,
perception, prediction, and planning) to help separate concerns
into interpretable sub-tasks. Even when end-to-end training
is possible, each module has its own set of objectives used
for safety assurance, sample efficiency, regularization, or in-
terpretability. However, intermediate objectives do not always
align with overall system performance. For example, optimizing
the likelihood of a trajectory prediction module might focus
more on easy-to-predict agents than safety-critical or rare
behaviors (e.g., jaywalking). In this paper, we present control-
aware prediction objectives (CAPOs), to evaluate the down-
stream effect of predictions on control without requiring the
planner be differentiable. We propose two types of importance
weights that weight the predictive likelihood: one using an
attention model between agents, and another based on control
variation when exchanging predicted trajectories for ground
truth trajectories. Experimentally, we show our objectives im-
prove overall system performance in suburban driving scenarios
using the CARLA simulator.

I. INTRODUCTION

Autonomous vehicles (AVs) must navigate busy roads us-
ing predictive models to anticipate what surrounding pedes-
trians and vehicles might do in order to plan safe trajectories
around them. Safe operation requires such components be
well calibrated, typically by minimizing some regression
error on training data. However, not all errors made by
prediction modules are equally important: some errors have
minimal effect on downstream decisions, while some per-
ceptual errors [24] and predictive errors [25] can have fatal
outcomes. As no model is perfect, it is crucial to identify
which prediction errors are safety-critical to ensure safety
[19].

Whether trained independently or as part of multi-task
end-to-end architectures [30], multi-agent trajectory forecast-
ing models typically optimize prediction-specific objectives
based on regressing recorded future trajectories by consid-
ering all agents equally important a priori. However, when
considering the target control task of autonomous naviga-
tion, some predictions warrant more attention than others
when deciding safe controls. Consequently, control-agnostic
optimizing of prediction models may not result in improved
downstream navigation performance due to limited data,
model capacity, rare events, or computational constraints.
Even with end-to-end training, multi-task objectives might
not be aligned, thus resulting in performance degradation
due to task interference [36].

In this work, we propose Control-Aware Prediction Ob-
jectives (CAPOs) to train prediction models that more ac-
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Fig. 1: A vehicle drives to the right while reacting to
pedestrians with sample predicted trajectories shown in
purple or pink. Our Control-Aware Prediction Objectives
(CAPO) can learn to capture which predictions should have
more influence on the vehicle’s controls (cyan lines propor-
tional to attention). Videos available at https://sites.
google.com/view/control-aware-prediction

curately reflect the relative effects of predictive errors on
downstream control. Computing these downstream effects
requires only forward passes without backpropagation be-
tween modules. This improves applicability with real-world
AV planning and control systems, which might not be fully
differentiable due to complex design constraints (e.g., verifi-
ability, interpretability, comfort and safety constraints). Our
method introduces importance-weighted prediction likeli-
hood objectives using forward passes of the prediction model
and planner. We investigate two weighting methods that can
be trained with backpropagation. The first assigns weights
based on control variations due to prediction changes. The
second uses learned attention weights between agent predic-
tions and AV controls.

Using the CARLA simulator, we experimentally show
that training prediction models with control-aware objec-
tives leads to improved controller performance in complex
multi-agent urban driving scenarios. Compared with existing
prediction models, including prediction algorithms that treat
everything as equal, we show that our new objective helps to
avoid precisely those errors that would maximally influence
downstream decisions.

II. RELATED WORK

Several related fields of study investigate objective-aware
prediction metrics as we discuss here.

A. Objective-Aware Prediction in Reinforcement learning

Model-based reinforcement learning (MBRL) methods
learn a dynamics model of an autonomous agent to predict
which control decisions lead to states with higher objective
rewards [7, 22, 21]. MBRL prediction is related to AV
prediction, with the main difference being that AVs predict



the trajectories of other human agents and not those of
the autonomous agent. Nevertheless, several MBRL works
have recently challenged the common assumption that the
better a dynamics model’s predictive accuracy, the better
the downstream policy will maximize reward. For example,
Lambert et al. [17] show task-agnostic loss functions used to
train dynamics models are often uncorrelated with episode
rewards, an issue termed “objective mismatch”.

Indeed, learned dynamics models need not be accurate
everywhere in the state space, only in the areas that help
maximize rewards [3]. Some RL works investigate training
models insofar as they improve estimating the value function
[11, 2], policy gradient [14, 1], or ability to reach a goal state
[23]. Others optimize downstream policies directly using
Bayesian optimization to search model parameters [3]. Work
by Donti et al. [8] points out that in practice we often want
a combination of training a model to optimize its likelihood
as well as a downstream task term, although in the context
of constrained optimisation. Similarly, Lambert et al. [17]
correlate both metrics by increasing the weight in the loss of
data points closer to data the optimal controller generates.

Unfortunately for AV applications, such objective-aware
prediction methods are often inapplicable for several reasons.
First, MBRL assumes access to an objective reward function,
reward samples, or goal state, but objective measures or goals
of desirable driving are often difficult to define. By contrast,
human-designed AV control systems are often preferable for
verification and interpretability reasons. Second, a common
assumption in RL is that the policy is either differentiable
or stochastic (in the case of policy gradients), whereas real-
world AV control systems often contain complex logic that
is neither differentiable nor stochastic. Our work focuses
instead on how to learn prediction given access to a safe,
potentially non-differentiable controller.

B. Map-Aware Prediction Metrics

Map information can help incorporate prior knowledge
into prediction metric design. For example, since the ego
vehicle drives on the road, pedestrian forecasting errors could
be given more weight on road surfaces than otherwise. Work
by Shridhar et al. [32] use maps to help focus on potential
collisions with other agents by generating a set of candidate
ego trajectories along known lane tracks that any controller
might follow. This method does not assume a particular
downstream controller, but makes an educated guess as to
what a reasonable controller might do. Another map-based
prediction metric is Drivable Area Compliance (DAC) [5],
which counts the proportion of model samples that exit the
drivable area. A conceptual difference with our method is
that our prediction metrics assume access to the specific
downstream controller that will be used at test-time, improv-
ing test-time performance. Since controllers already consider
road information, we circumvent the need to explicitly design
prediction metrics around mapping information, which can
incur additional hyperparameters, such as the relative costs
of predicting if an agent will traverse either road / sidewalk
/ building.

C. Control-Aware Perception

Philion et al. [26] propose a control-aware 3D object per-
ception metric called Planning KL-divergence (PKL) based
on how perceptual errors cause distributional divergence in
the ego’s distribution of planned paths, compared to a planner
with perfect observations, measured by the KL divergence.
In contrast, our work focuses on prediction objectives, and
additionally demonstrates how the new objective empirically
affects online-control using a driving simulator. We also
avoid KL distance losses in our work since this assumes
non-trivial stochasticity in the controller or data, which
is not always the case. Other works have also used KL
policy distances to investigate how observations can be
compressed while preserving human-like actions had they
remained uncompressed [28]. Work by Piazzoni et al. [27]
also investigates how perceptual metrics affect downstream
planning but are specific to perception.

III. PRELIMINARIES

Here we formalize our notation and discuss some existing
prediction metrics before presenting our own.

A. Notation and Assumptions

Let x ∈ X denote past trajectory information about all
agents, used to make probabilistic predictions ŷ ∈ PY about
the future multi-agent trajectories y ∈ Y . Trajectories are
predicted up to time horizon T , and yT denotes the future
state at time T . As the intents of other agents are usually
uncertain, we use a probabilistic prediction model qθ with
trainable parameters θ to sample the motion of others: ŷ ∼
qθ(Y|x), denoting likelihoods as qθ(y|x)

.
= qθ(Y = y|x).

If multiple samples are taken, ŷk refers to the kth sample,
and to single out the nth agent we overload notation using
ŷn, and use yego as the AV’s future trajectory. Given such
predictions, the AV controller π outputs ego controls u ∈ U
to anticipate and avoid colliding with other agents’ future
trajectories: u = π(y).

We assume our AV stack performs behavior prediction be-
fore control, a common assumption [31]. While conditioning
behavior prediction on ego’s intent provides more accurate
prediction, for sake of simplicity we assume that other agents
do not anticipate the AV’s future, only the AV anticipates the
other agents’ future trajectories in order to avoid collisions.

B. Common Prediction Metrics and Objectives

Common prediction metrics in the literature and in pre-
diction benchmarking challenges–including Argoverse Fore-
casting [5], Lyft Prediction [12], Waymo Open Motion [10],
and AIODrive [35]–are summarized in Table I:

TABLE I: Common prediction metrics in the literature.

Metric Name Metric Equation
Average Displacement Error (ADE) ||ŷ − y||2
Final Displacement Error (FDE) ||ŷT − yT ||2
Minimum-ADE (minADE) mink∈[K] ||ŷk − y||2
Minimum-FDE (minFDE) mink∈[K] ||ŷkT − yT ||2
Miss Rate (MR) 1

K

∑
k 1[||ŷkT − yT ||2 > α]

Negative Log Likelihood (NLL): − log qθ(y|x)



Most metrics compare the Euclidean distance between
either the full predicted state-sequence ŷ (or final state
ŷT ) with the true sequence y (or final state yT ) an agent
took, as recorded in data. Probabilistic models are typically
trained to minimize the negative log likelihood (NLL) of
the data. All such metrics are agnostic to road geometry and
downstream planning, which implicitly assumes that all other
agents’ forecasts are equally relevant. For example, consider
two pedestrians: one walking ahead of the ego vehicle and
one behind. Assuming independent pedestrian motion, the
NLL objective factorizes as: − log qθ(y

ahead,ybehind|x) =
− log qθ(y

ahead|x)−log qθ(ybehind|x). Notice that this predic-
tion metric is equally concerned with both yahead and ybehind.
Intuitively, accurate prediction of the pedestrian ahead of the
ego vehicle is more important for safe motion planning since
the ego’s planned path is more likely to intersect with yahead

than ybehind. How can prediction metrics become “aware”
that errors in predicting yahead have greater downstream
consequences than errors in ybehind?

IV. CAPO: CONTROL-AWARE PREDICTION OBJECTIVES

In this section we propose novel prediction loss functions
that consider how predictions will be used downstream
to improve predictive accuracy whenever prediction errors
would cause a large change in control outputs. In Bayesian
decision theory, a decision is evaluated as the expected
utility of a decision u or controller π, integrating out any
uncertainties [4]. In our case, it is the future trajectories of
other agents that are unknown but can be probabilistically
predicted according to a model with parameters θ. Following
the literature on loss-calibrated variational inference [16, 6,
15], we define the gain of a decision or controller’s value as
a function of the model parameters θ that we wish to train.

Gainx,y,π(θ) =

∫
utility(π,y, ŷ,x)qθ(ŷ|x)dŷ. (1)

The choice of utility function in Eq. (1) is an open one,
that is why we considered many possible input parmeter; it
defines how desirable a course of actions would be given
x and ŷ. Alternatively, an existing metric like the NLL
can simply be weighted without integration. In the next
subsection we discuss some baseline choices for the utility
or weight, and after, we propose two novel methods for
computing these weights: a self-attention method and a
counterfactual method.

A. Baseline Objectives

Most predictive metrics in the literature are agnostic to
u and simply use a delta function to only score correct
trajectory predictions, recovering the standard log likelihood
metric: Gainx,y(θ) =

∫
δ(y − ŷ)qθ(ŷ|x)dŷ = qθ(y|x).

However, we are interested in utilities that are a function
of u in order to weight predictions by their downstream
effect on the ego’s control. For instance, we could score
trajectory predictions based on the resultant ego controls
π(ŷ) matching the ego’s behavior under knowledge of the
true future trajectories π(y): Gainx,y,π(θ) =

∫
δ(π(y) −

π(ŷ))qθ(ŷ|x)dŷ. This integral is unfortunately intractable
to derive or estimate, but softer utility functions can be
used instead. One example is ||π(ŷ) − π(y)||1, which we
include as a baseline in Table II. Optimizing this controller
output error guides the learning process towards predicting
controller inputs (predicted trajectories) accurately, insofar
as they result in the correct control. Any trajectory errors
that do not induce a change in the AV’s control are thus
considered inconsequential and ignored.

B. Attention-based CAPO

We propose a GRU encoder-decoder architecture with
an attention mechanism as introduced in [34]. Our method
weights the agent predictions using attention factors between
agents x and the AV’s future trajectory yego. The predictive
model is a function parameterized by θ noted qθ : X →
PY×Yego . We note θ = {θego, θagent} where θego is the set
of parameters for the ego decoder only; X is the past
observation space and PY×Yego the probability spaces of
future trajectories: PYego for the ego and PY for other agents.

We use an architecture similar to [18, 20] where we train
a model with multi-head attention; the ego agent attends the
other agents. The ego predictions are used as a proxy for the
actual planner to compute the importance weights of other
agents:
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Fig. 2: Diagram of the attention model. All agent encoders
and decoders share their weights. Encoders and decoders are
GRUs. Attention is not used between agents.

The ego-attention blocks in figure Fig. 2 are heads of a
multi-head attention mechanism. The computation performed
by each head is given below:
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Fig. 3: Diagram of a self-attention head.



The attention vector is given by

α = σ

(
QK>√
dk

)
= [α0, ..., αN ], (2)

where Q is the query matrix, K the key matrix, and σ the
softmax operation that normalizes the attention vector (for
details see [34]). The encoded output = αV is a weighted
mean of the value vectors over the agents (including ego).

Inspired by [20] the attention model produces outputs in
the form of a sequence of Gaussian mixtures for each agent
and is trained to minimize the NLL for all agents and the
ego trajectory predictions. However, for our application, ego
prediction is not the goal, it is only a proxy to compute the
importance weights of the pedestrian contribution to the ego
behavior.

We propose to use attention coefficients α as importance
factors in a weighted sum of per-human state prediction loss
(as opposed to uniform weighting). Algorithm 1 summarizes
how the model is trained with importance weighting. If mul-
tiple heads are used, the attention coefficients are averaged:

wn =
1

H

H∑
h=1

α(h)
n (3)

The attention predictor imitates a planner that interacts
with the other agents to avoid collision. The only way for
the predictor to interact with the other agents is through
attention. Therefore, as the model learns the correlations
between the planner’s trajectories and the agents trajectories,
larger attention coefficients are given to the agents that cause
larger reactions from the controller. It learns this offline and
does not need access to the controller nor its gradient.

Predicting jointly the ego trajectory and the other agents
allows us to use the attention coefficients for concern
weighting in a single run. The coefficient α0 quantifies how
independent the ego is from other agents.

This method defines a concern about an agent but not
about specific trajectories of that agent. It can define the
concern without using the controller because it instead uses
an offline-learned model that imitates the controller.

Algorithm 1 Attention CAPO
Input: Controller: π : X → U

1: Record trajectory data D = {x,y}i
2: while training do
3: Sample batch x,y ∼ D
4: Run model to estimate ŷego and ŷagent from x
5: Get attention: α(x) . Eq. (2)
6: Compute weight: w(α(x)) . Eq. (3)
7: Update model:

θego ← θego +∇θego log qθ(yego|x)
θagent ← θagent + w(x)∇θagent log qθ(yagent|x)

Output: Predictive model qθ : X → PY×Yego

C. Counterfactual Action-Discrepancy CAPO

Our second proposal can also be formulated as a re-
weighted maximization objective, where we weight the log

likelihood of each agent’s trajectory in a scene by its in-
dividual contribution to the ego’s control decision. We do
this by first enumerating through each agent in a scene, and
computing counterfactual outputs from the AV’s controller if
every agent traversed their individual trajectory as recorded
in the replay buffer, except for agent n. If we resample the
trajectory that the nth agent might otherwise have taken,
ŷkn ∼ qθ(Yn|x), we can compute the control output that
would result:

ûkn = π({ŷkn} ∪ y \ {yn}), (4)

to compare against the control had no agent deviated from
their recorded trajectories:

u = π(y). (5)

The difference in these two hypothetical controls corresponds
to how much an individual agent affects the ego vehicle,
and can represent the concern associated with predicting this
particular agent in this particular instance accurately. If the
model is probabilistic, then taking multiple samples (K > 1)
helps ensure high importance even if the other agent only
might cause a control deviation:

wn = max
k∈{1..K}

||u− ûkn||1, (6)

which we use as weights for predictive model training:

θ∗ = argmax
θ

N∑
n=1

wn log qθ(yn|x). (7)

We summarize our counterfactual action discrepancy
method in Algorithm 2. One benefit of this approach com-
pared to the attention CAPO is that it is

Algorithm 2 Counterfactual CAPO
Input: Controller: π : X → U

1: Record trajectory data D = {x,y}i
2: while training do
3: Sample batch x,y ∼ D
4: Compute hypothetical controls: u, ûkn . Eq. (4)–(5)
5: Compute weight: w(u, ûkn) . Eq. (6)
6: Update model: θ ← θ + w(u, ûkn)∇θ log qθ(y|x)

Output: Predictive model qθ : X → PY

D. Summary of Objectives

There are various choices for utilities, or weights for
traditional module metrics. In Table II we summarize the
several baselines methods, including NLL and our novel
proposals.

V. EXPERIMENTAL EVALUATION

To evaluate our proposed method, we consider a represen-
tative scenario that is commonplace in autonomous driving:
pedestrian trajectory prediction. The majority of pedestrian
behaviors can safely be ignored by the AV’s autonomy stack;
however, in rare cases of pedestrian-ego interaction (e.g.,
road crossings), accurate prediction of pedestrian behavior



TABLE II: Comparison of utilities and weighted objectives.

Method Utility or Weight Objective L(θ)

Baselines:

Attention δ(y − ŷ) qθ(y|x) + qθ(yego|x)
R2P2 Gainy δ(y − ŷ) qθ(y|x)
R2P2 Gainπ1 ||π(y)− π(ŷ)||1 Eŷ [||π(y)− π(ŷ)||1]
R2P2 Weight∇ŷ ||∇ŷπ(ŷ)||1 Eŷ

[
||∇ŷπ(ŷ)||1

]
qθ(y|x)

R2P2 Weight∇y ||∇yπ(y)||1 ||∇yπ(y)||1qθ(y|x)

Ours:

R2P2 Weightπ ||π(y)−π(ŷ)||1 Eŷ [||π(y)−π(ŷ)||1] qθ(y|x)
R2P2 Weightπk maxk ||π(y)−π(ŷk)||1 maxk ||π(y)−π(ŷk)||1qθ(y|x)
AttentionWeight α(x) α(x)qθ(yagent|x) + qθ(yego|x)

becomes crucial in avoiding collisions. This sparsity of
interaction showcases how predictive models may perform
well with respect to traditional metrics (e.g., ADE) while
still leading to suboptimal ego behavior when it matters most.
Here, we first detail our experimental evaluation and imple-
mentation of the aforementioned scenario within the CARLA
autonomous driving simulator [9]. We then compare results
between our method and the various baselines discussed in
Table II, where our experiments show that predictive models
trained using our CAPO methods produce safe behavior with
fewer collisions relative to other baselines.

Fig. 4: Pedestrian Prediction Scenario. Pedestrians spawn
on the sidewalk (yellow region) and the ego (red car)
predicts the pedestrian trajectories within the next 3 seconds
(green). Some pedestrians will cross the road at right angles
(blue). Left: the planner predicts a collision with a crossing
pedestrian and starts slowing (red ego prediction up to blue
line but not further). Right: ego is safely passing the road
segment where the pedestrian has already crossed.

A. CARLA Scenario Design

We implement our pedestrian prediction scenario in the
CARLA simulator’s Town01. A single ego vehicle is com-
manded to drive down a road that is adjacent to sidewalks
which are populated with pedestrians. Occasionally, a pedes-
trian will cross the street and the ego agent must slow to
avoid a collision when necessary.

The ego vehicle adjusts its longitudinal control to balance
the competing priorities of maintaining the current speed
limit (45mph) while avoiding collisions with the pedestrians
crossing the road (either their current or future-predicted
distance on the road ahead). This balance is performed by an
Intelligent Driver Model [33]. It uses predictions to estimate
the closest collision distance and controls the vehicle to stop
ahead of that point.

Pedestrians spawn at random locations on the sidewalk and
are then provided a long-range navigation goal that is also
uniformly sampled from the sidewalk. When the long-range
goal is reached, another is sampled to replace it. To induce
pseudo-random motion, a short-range goal is also generated
at each time step. This goal is generated by projecting a
point 4m along the path to the long-range goal, starting
at the pedestrian’s location. The lateral offset βt+1 of the
short-range goal is generated by sampling from a normal
distribution centered about the previous lateral offset βt after
it has been scaled down (to drive it towards the long-range
goal):

βt+1 = (1− ε)βt +N (0, σ2), (8)

where σ is the variance of the noise, and ε ∈ [0, 1) is the
commitment to the long-range goal.

When on the sidewalk, pedestrians are programmed to
walk at speeds sampled about 2m/s while navigating around
other pedestrians to avoid collisions and, occasionally, will
pause outside of shops. Each different kind of pedestrian is
defined with various noise levels, commitment, and stopping
chance.

Pedestrians may also randomly decide to cross the road.
The probability increases if their velocity vector points
towards the road and increases greatly when the pedestrian
is close to the road. While crossing, they travel at 2 m/s
in the shortest path possible, i.e., perpendicular to the road
direction. To increase task difficulty, the probability that
pedestrians will cross the road is increased at test time.

B. Compared models

1) Oracle distribution The pedestrian behavior is simu-
lated with a known distribution at each time step, which is
sampled to produce a trajectory. The trajectory distribution
is approximated by sampling K = 5 trajectories for each
pedestrian. The planner reacts to the trajectory that would
cause the closest intersection with its desired path. This
method is a perfect probabilistic predictor which is only
accessible with simulated data. Its predictions are not biased
towards sampling the most critical trajectories, and planning
with relatively few samples can yield suboptimal results.

2) Gradient weighting Recent work has also investigated
weighing prediction objectives by a measure of local sensitiv-
ity of downstream costs to individual predictions [13]. This
method first learns a cost function to evaluate ego controls
given predicted human trajectories, using inverse optimal
control. The method then weights each prediction loss by
the gradient magnitude of the cost outputs w.r.t. the predic-
tion inputs. In our work, we consider using the controller
directly, forming an analogous baseline: using gradients of
the controller w.r.t. the predicted trajectory ||∇ŷπ(ŷ)||1, or
true trajectory ||∇yπ(y)||1, included in Table II. While we
do not assume differentiable controllers in our own methods,
we nevertheless experiment using a differentiable controller
to compare against this baseline method.



TABLE III: Scenario results, 100 episodes. Arrows indicate higher/lower preferred. Standard errors shown. Best, second.

Predictive Model Success Rate ↑ Collisions ↓ Speed (m/s) ↑ Jerk (m/s−3) ↓ ADE (m) ↓ Control Error ↓
Baselines:
R2P2 Gainy 89.0% 11 9.97 ±0.222 8.92 ±0.250 2.09 ±0.024 0.59 ±0.012
R2P2 Gainπ1 85.0% 14 10.45 ±0.268 6.65 ±0.196 3.48 ±0.038 0.63 ±0.016
R2P2 Weight∇ŷ 94.0% 4 9.53 ±0.216 8.21 ±0.140 1.98 ±0.024 0.60 ±0.012
R2P2 Weight∇y 91.0% 9 9.74 ±0.216 8.74 ±0.184 2.00 ±0.025 0.60 ±0.011
Attention [20] 89.0% 11 13.79 ±0.214 4.48 ±0.147 2.61 ±0.050 0.63 ±0.026
Oracle distribution 98.0% 2 10.54 ±0.231 6.80 ±0.180 1.58 ±0.036 0.51 ±0.013
Our methods:
R2P2 Weightπ 93.0% 7 8.86 ±0.188 9.26 ±0.194 2.29 ±0.022 0.58 ±0.010
R2P2 Weightπk 99.0% 1 9.46 ±0.196 7.89 ±0.159 2.14 ±0.018 0.55 ±0.011
Attention Weightα 91.0% 9 14.36 ±0.217 4.22 ±0.154 2.58 ±0.053 0.64 ±0.024

3) Attention weighting As presented in section IV-B. We
train this model with our CAPO method (algorithm 1) and,
as a baseline, we compare it with the unbiased prediction as
the predictor [20] would produce.

4) Reparameterized Pushforward Policy (R2P2) we use
the likelihood-based multi-agent prediction algorithm R2P2
[29] as baseline Gainy, and also use R2P2 as the base
model for all other predictive models apart from the attention
model. R2P2 is a autoregressive normalizing flow, capable of
expressing multimodal agent trajectories, trained with NLL.
We parameterize R2P2 to predict 30 steps with data at 10Hz,
corresponding to a 3s prediction for all pedestrians. We train
it with our CAPO method (algorithm 2) using K = 10
samples and we use K = 1 samples at test time.

C. Metrics

The table III presents our results for 100 sequences. We
track the performance of the system (prediction and planner)
with the success rate and the number of collisions. Three
conditions may end a sequence:
• Success: vehicles traverses 200m road without incident.
• Collision: a pedestrian was hurt.
• Time out: the car was too slow (> 60s).
We also score efficiency and comfort indicators by average

speed and average jerk respectively. Finally, we compute
the average pedestrian trajectory prediction errors and their
downstream effect on the planner with the average dis-
placement error (ADE) and the Control Error equal to
||π(y)−π(ŷ)||1. The control error measures the downstream
effect of the prediction error on the ego’s plans.

VI. DISCUSSION

The results in Table III show that while all methods do
reasonably well, weighting predictive objectives by their
downstream effect improves the downstream performance as
illustrated by a low collision count and control error. While
methods such as R2P2 Weight∇ŷ assume a differentiable
controller, we find this assumption does not need to be
made, and our methods can work with any type of controller.
While our methods did not score as well on the ADE metric
of agents’ trajectories, they did score best on the metrics
that matters more: the control error, and success rate, thus
mitigating error propagated downstream and improving the

end task performance. We compared to objectives weighted
by the planner’s sensitivity ||∇ŷπ(ŷ)||1, which is related
to [13]. However, such methods assume the planner (or
cost function) is differentiable, which is often not the case
in real AV systems. Secondly, local sensitivity to a point
prediction is not necessarily a good measure of relevance
if the gradient is noisy or changes drastically over the full
predictive distribution. While our experiments show encour-
aging results, testing with various setups and environments
would be needed to give a clear best method.

VII. CONCLUSIONS

Modular autonomous systems (such as those commonly
used in AVs) provide a number of advantages, but generally
incur the disadvantage that individual components typically
do not optimize for system-wide or downstream perfor-
mance metrics directly. In this paper, we proposed weighted
objectives for learning prediction models that account for
the downstream objective without imposing stringent re-
quirements on downstream components (such as end-to-end
differentiability). These objectives weight the usual likeli-
hood objective, either using attention weights derived from
a behavior-cloned policy, or using the impact that substituting
predicted trajectories for ground-truth trajectories has on
planner output. Accounting for the downstream objective in
this manner encourages prediction models to focus on what’s
important – either at the agent or individual trajectory level
– and, as a result, improves system-wide performance, as we
showed empirically in a pedestrian jaywalking scenario.

A number of promising avenues exist for future research.
First, control-aware objectives may provide out-of-domain
generalization benefits by encouraging prediction models to
focus on relevant aspects of the scene, and ignore spurious
sources of information that are safe to ignore. Second, in this
paper we focused on data collected from an expert. However,
this requirement limits the applicability of the proposed
metrics, and a broader coverage of the state-space resulting
from the use of both expert and suboptimal data might
improve the learned prediction models. Finally, although we
focused in this paper on using control-aware weighting for
optimizing prediction models. Our method might equally
well be used to define a weighted metric for evaluating
models in a validation setting where training-time access to
the downstream planner is either not available or undesirable.
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