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Motivation Our Method: Attention CAPO Our Method: Counterfactual CAPO
We can also weight errors by counterfactual action discrepancy. We isolate each pedestrian’s
Input  Encode Self: Decode Output individual contributions to the ego’s control by combining how agent n. might move §% ~ qg(Yy|x)
attention forecast with how other agents did move:
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Track VO and compare against the control had no agent deviated from their recorded trajectories:
rack ego
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t% %%%8 % g/" - The difference corresponds to how much an individual agent affects the ego. For probabilistic
Track vehicle 1 Softmax| % OO O)Y = € models, multiple samples can ensure high importance even if agents only might affect control:
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which we use as weights for predictive model training:
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Figure 1. The equivariant attention weighting method uses the attention matrix from multi-agent trajectory Input: Controller: = : X — U
forecash’hg, \(vhich reflects how much the ego vehicle’s trajectory is a function of the other vehicles or pedestrians 1- Record trajectory data D = {X, Y}z’
surrounding it. 2. while training do
3 Sample batch x,y ~ D
- 4:  Compute counterfactual controls: u, ﬁfb > Eqg. (6)-(7)
a(x) = o Q(x)K(x) _ Jap,...ax] 1) 5. Compute weight: w(u, ) > Eq. (8)
Vg 6. Update model: 8 < 6 + w(u, 1¥)Vylog ga(y|x)
y = a(x)V, (2) Output: Predictive model gg : X — Py
= Consider an autonomous vehicle planning to drive along the arrow. X e
S - : . 9 - — 7Dyagentxyego’ (3)
= |t forecasts each pedestrian’s trajectory, with errors between prediction and ground truth
Quests Which f - " . h if g Oego < Oego + Veego log qe(Yego|X>a (4)
= Question: ich forecasting errors matter most here (have real-life consequences):
5 - Oagent < Oagent + &(X)Veagem log g9(yagent|X)- (5) Results
= Problem: forecasting metrics typically unaware of usage (“objective mismatch” [?])
= Solution: weight forecasting metrics by their effect on downstream control Model Objective Collisions | Speed (m/s) 1 Jerk (m/s™7) | ADE (m) | Control Error |
Baselines
= Benefit: improves forecasting accuracy where it matters most (e.g. potential collisions) R2P2 [11] Ingp(y|x)  11/100 9.97 w0222 8.92 x020  2.09 xo02t 0.5 o012
Attention [10] In gy(Yagent|x) + Ingy(yegolx)  11/100 13.79 +0.214 4.48 +o.147 2.61 +0.050 0.63 +0.026
Our methods
The Literature R2P2 Ey |7 (y)—=7(3)|]1] - Inqy(y]x) 7/100 8.80 +0.188 9.26 +0.194 2.29 +0.022 0.58 +0.010
R2P2 maxy, ||7(y) —W(ka)Hl - In gy(y|x) 1/100 9.46 +0.196 7.89 +0.159 2.14 +o0.01s 0.55 +oon1
Attention a(x) - In QH<Yagent|X) + In ¢p(yego|x) 9/100 14.36 +o217 4.22 +0.154 2.58 +0.053 0.64 +0.024
Oracle distribution 2/100 10.54 +0.231 6.80 +0.180 1.58 +0.036 0.51 +0.013

Control-Unaware Prediction Objectives

Common prediction metrics in the literature and in prediction benchmarking challenges-including
Argoverse Forecasting [3], Lyft Prediction [7], and Waymo Open Motion [5]-are:

= By weighting prediction errors by their effect on downstream control, we can improve metrics
we really care about: e.g., fewer collisions.

= This can decrease performance on tradition metrics like Average Displacement Error (ADE).

Metric name Objective
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Control-Aware Prediction Objectives

Some common assumptions when solving the objective mismatch problem:
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2. Is the planner stochastic? (useful for policy gradient methods [8, 1))

3. Is the planner a known function? (useful for computing counterfactual actions)

We assume (3) only, since many real autonomous vehicle planners are human-designed for rea-
sons of safety and verification. So our method can handle planners that are differentiable, non-
differentiable, stochastic, or deterministic.
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segment where the pedestrian has already crossed.
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