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Motivation

Consider an autonomous vehicle planning to drive along the yellow arrow.

It forecasts each pedestrian’s trajectory, with errors between predic on and ground truth

Ques on: Which forecas ng errors ma er most here (have real-life consequences)?

Problem: forecas ng metrics typically unaware of usage (“objec ve mismatch” [9])

Solu on: weight forecas ng metrics by their effect on downstream control

Benefit: improves forecas ng accuracy where it ma ers most (e.g. poten al collisions)

The Literature

Control-Unaware Predic on Objec ves

Common predic on metrics in the literature and in predic on benchmarking challenges–including

Argoverse Forecas ng [3], Ly Predic on [7], and Waymo Open Mo on [5]–are:

Metric name Objec ve

Average Displacement Error (ADE) ||ŷ1:T − y1:T ||2
Final Displacement Error (FDE) ||ŷT − yT ||2
Minimum-ADE (minFDE) mink∈{1,...,K} ||ŷ

(k)
1:T − y1:T ||2

Minimum-FDE (minFDE) mink∈{1,...,K} ||ŷ
(k)
T − yT ||2

Miss Rate (MR) 1
K

∑
k 1[α < ||ŷ(k)

T − yT ||2]
Nega ve Log Likelihood (NLL) − log q(y1:T )

Control-Aware Predic on Objec ves

Some common assump ons when solving the objec ve mismatch problem:

1. Is the planner differen able? (useful for end2end methods and sensi vity analysis [6, 2])

2. Is the planner stochas c? (useful for policy gradient methods [8, 1])

3. Is the planner a known func on? (useful for compu ng counterfactual ac ons)

We assume (3) only, since many real autonomous vehicle planners are human-designed for rea-

sons of safety and verifica on. So our method can handle planners that are differen able, non-

differen able, stochas c, or determinis c.

Our Method: Attention CAPO

Figure 1. The equivariant a en on weigh ng method uses the a en on matrix from mul -agent trajectory

forecas ng, which reflects how much the ego vehicle’s trajectory is a func on of the other vehicles or pedestrians

surrounding it.

α(x) = σ

(
Q(x)K(x)>√

dk

)
= [α0, ..., αN ], (1)

ŷ = α(x)V, (2)

qθ : X → PYagent×Yego, (3)

θego ← θego +∇θego log qθ(yego|x), (4)

θagent ← θagent + α(x)∇θagent log qθ(yagent|x). (5)

Figure 2. A vehicle drives to the right while reac ng to pedestrians with sample predicted trajectories shown in

blue or pink. Our Control-Aware Predic on Objec ves (CAPO) can learn to capture which predic ons should have

more influence on the vehicle’s controls (cyan line width propor onal to a en on weight).

Experiments

Figure 3. Pedestrian Predic on Scenario. We use the CARLA driving simulator [4]. Pedestrians spawn on the

sidewalk (yellow region) and the ego (red) car predicts the pedestrian trajectories within the next 3 seconds (green).

Some pedestrians will cross the road at right angles. Le : the planner predicts a collision with a crossing pedestrian

and starts slowing (red ego drives up to the blue crossing line but not further). Right: ego is safely passing the road

segment where the pedestrian has already crossed.

Our Method: Counterfactual CAPO

We can also weight errors by counterfactual ac on discrepancy. We isolate each pedestrian’s

individual contribu ons to the ego’s control by combining how agent n mightmove ŷk
n ∼ qθ(Yn|x)

with how other agents did move:

ûk
n = π({ŷk

n} ∪ y \ {yn}), (6)

and compare against the control had no agent deviated from their recorded trajectories:

u = π(y). (7)

The difference corresponds to how much an individual agent affects the ego. For probabilis c

models, mul ple samples can ensure high importance even if agents only might affect control:

wn = max
k∈{1..K}

||u− ûk
n||1, (8)

which we use as weights for predic ve model training:

θ∗ = arg max
θ

N∑
n=1

wn log qθ(yn|x). (9)

Input: Controller: π : X → U
1: Record trajectory data D = {x, y}i
2: while training do

3: Sample batch x, y ∼ D
4: Compute counterfactual controls: u, ûk

n . Eq. (6)–(7)
5: Compute weight: w(u, ûk

n) . Eq. (8)
6: Update model: θ ← θ + w(u, ûk

n)∇θ log qθ(y|x)
Output: Predic ve model qθ : X → PY

Results

Model Objec ve Collisions ↓ Speed (m/s) ↑ Jerk (m/s−3) ↓ ADE (m) ↓ Control Error ↓
Baselines

R2P2 [11] ln qθ(y|x) 11/100 9.97 ±0.222 8.92 ±0.250 2.09 ±0.024 0.59 ±0.012

A en on [10] ln qθ(yagent|x) + ln qθ(yego|x) 11/100 13.79 ±0.214 4.48 ±0.147 2.61 ±0.050 0.63 ±0.026

Our methods

R2P2 Eŷ [||π(y)−π(ŷ)||1] · ln qθ(y|x) 7/100 8.86 ±0.188 9.26 ±0.194 2.29 ±0.022 0.58 ±0.010

R2P2 maxk ||π(y)−π(ŷk)||1 · ln qθ(y|x) 1/100 9.46 ±0.196 7.89 ±0.159 2.14 ±0.018 0.55 ±0.011

A en on α(x) · ln qθ(yagent|x) + ln qθ(yego|x) 9/100 14.36 ±0.217 4.22 ±0.154 2.58 ±0.053 0.64 ±0.024

Oracle distribu on 2/100 10.54 ±0.231 6.80 ±0.180 1.58 ±0.036 0.51 ±0.013

By weigh ng predic on errors by their effect on downstream control, we can improve metrics

we really care about: e.g., fewer collisions.

This can decrease performance on tradi on metrics like Average Displacement Error (ADE).
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